Identification of mineral deposits in the brain in radiological images: A systematic review

Elizabeth Ming Jing Tan¹, Maria C. Valdés Hernández²,³,⁴, Gillian Potter⁵, Stephen Makin²,³, and Joanna M. Wardlaw²,³,⁴

¹School of Medicine and Veterinary Medicine, University of Edinburgh, ²SINAPSE Collaboration, Scotland, ³SFC Brain Imaging Research Centre, Clinical Neurosciences, University of Edinburgh, ⁴Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, ⁵University of British Columbia, Vancouver, Canada

Background and Purpose:
• Brain iron deposits in old age, mainly in the basal ganglia, are associated with both normal-range intelligence and cognitive ageing [1]
• Other minerals appear commonly associated with hemosiderin depositions with little, similar or no effect in some types of radiological images, leading to contradictions in their identification.
• We studied how accumulations of iron, calcium, copper, aluminium, zinc and manganese, in their different stages, appear in different types of radiological images and their association with lifelong health conditions and common pathologies found in older individuals.

Methods:
We did a systematic review of the literature using OvidSP in Medline, PubMed and Web of Science up to July 2010 searching for studies that included the identification of different types of minerals in radiological images. We also selected 15 stroke patients that had CT and different modalities of MR images at the onset and follow up, and 17 that had, in addition, susceptibility weighted images (SWI). On the sample, we identified and compared the areas where minerals were accumulated and graded the SWI according to the Modified Scale of Hypointensity in the putamen and globus pallidus wave score [2] based on the conclusions obtained from the systematic review.

Results:

The literature review confirmed that iron and calcium appear hyperintense on CT scans and hypointense on T2*W MR, however calcium affects T1 signal while iron doesn’t. This was the case across a variety of pathologies including Parkinson’s, Alzheimer’s, cerebral amyloid angiopathy, microbleeds, stroke, multiple sclerosis, meningiomas, calcifications, Fahr’s disease and systemic sclerosis. It was found that iron and calcium tended to be deposited in the basal ganglia. Copper appears hypointense on CT scans as well as T2 and T2*W MR scans, and thus is distinguishable from iron and calcium. In the figure above, from a stroke patient, microbleeds (iron) are observed in the basal ganglia and thalamus and calcification in the choroid plexus.

Conclusions:
• This study confirmed our previous hypotheses to identify, in structural brain MR images, mineral depositions
• It will allow us to segment mineral deposits more accurately in the images of the participants of The Disconnected Mind Study and research how they affect cognition

References: