Changing supersites: Assessing the impact of the southern UK EMEP supersite relocation on measured atmospheric composition

H.L. Walker1,2, M. R. Heal2, C. F. Braban1, S. Ritchie3, C. Conolly3, A. Sanocka3, U. Dragosits1 and M. M. Twigg1

[1] Natural Environment Research Council, Centre for Ecology & Hydrology, Penicuik, UK
[2] School of Chemistry, The University of Edinburgh, UK

Correspondence to: H Walker (hwalker55@ceh.ac.uk)

Abstract

In January 2016 the United Kingdom’s southern European Monitoring and Evaluation Programme (EMEP) level-2 air pollution monitoring “supersite” was relocated from Harwell, Oxfordshire to Chilbolton Observatory, Hampshire. As no co-location study was undertaken, this work retrospectively investigates whether the supersite relocation has led to discontinuities in the time series of concentrations of commonly studied gaseous pollutants (NOx, NH3, SO2 and O3) and particulate matter (PM2.5 and PM10). Two years of measurements pre- and post- relocation (2014-15 and 2016-17 respectively) were analysed in conjunction with meteorological variables and local emission data. The deweather package was applied to the concatenated time series to minimise the influence of meteorology. Similar average concentrations of PM2.5, PM10, SO2 and O3 were observed, but there were substantial differences in that of NOx and NH3 (increase by factors of ~1.6 and ~3, respectively). The considerably higher NH3 concentrations at Chilbolton are attributed to the close proximity of mixed farmland, in particular to a strong south-westerly source contributing to ~50% of the annual average. NOx and PM concentrations in easterly winds arriving at Chilbolton are ~2.7 and ~1.5 times larger than at Harwell, from sources including the M3 motorway and Greater London. Westerly concentrations of NOx remain similar, therefore despite a higher frequency of westerly wind, annual mean concentrations are larger. Lower concentrations of PM arriving from the west result in similar annual averages.
secondary inorganic and black carbon components of PM were broadly similar between
the sites. The differences in average NO\textsubscript{x} and NH\textsubscript{3} at Chilbolton must be taken into
account when considering long-term regional trends based on the southern UK
supersite data.

1. Introduction

Atmospheric pollution has a significant influence on human and ecosystem health. Inhalation
of ozone (O\textsubscript{3}) and particulate matter has been linked to cardiovascular and respiratory diseases
(WHO, 2006, 2013). Deposition of acidic gases causes acidification of terrestrial and aquatic
ecosystems, and nitrogen deposition (e.g. from nitrogen oxides, NO\textsubscript{x}, or ammonia, NH\textsubscript{3}) leads
to eutrophication (Sutton et al., 2011; RoTAP, 2012).

Monitoring of air pollutant concentrations is important for quantifying these effects and their
spatio-temporal trends (Fagerli et al., 2008; Malley et al., 2014). In Europe, the Cooperative
Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants
in Europe (EMEP, www.emep.int) has the aim of providing member states with this
quantitative information (Tørseth et al., 2012). Measurements within EMEP are made at rural
sites representative of the surrounding area (Spangl et al., 2007; Joly et al., 2012) and adhere
to prescribed sampling methods and siting criteria detailed by the Chemical Coordinating
Centre (EMEP-CCC) to ensure comparability (Kuhlbusch et al., 2014). Spatially distributed
sites provide data for evaluation of regional models (Fagerli et al., 2008; Cape, 2009; Malley
et al., 2014), whilst hourly measurements for 40+ years allow characterisation of emission
patterns and separation of long-term trends from interannual variability (Tørseth et al., 2012).
Such data help establish achievable mitigation strategies (Pope et al., 2014) and track impacts
of implemented measures.

The UK has been a member of EMEP since its inception in 1979, and currently operates two
level-2 “supersites” (UNECE, 2004a, 2004b) at Auchencorth Moss in southern Scotland, and
Chilbolton Observatory in southern England (Defra, 2018a, 2018b; figure 1) measuring a wide
range of pollutants. The southern supersite, Chilbolton, opened in January 2016 following the
closure of the previous site (Harwell, figure 1) in December 2015, which had been active for
several decades. The aim of this study is to investigate whether the move from Harwell to
Chilbolton led to a temporal change in the chemical climate recorded by the southern rural UK supersite. Given the extensive instrumentation, duplicate measurements could not be run for any overlap period. An analysis is presented of measurements in the years directly pre- and post-relocation (2014-15 and 2016-17 respectively), focussing on nitrogen oxides (NO\textsubscript{x}), ammonia (NH\textsubscript{3}), sulphur dioxide (SO\textsubscript{2}), particulate matter <10 and 2.5 μm in diameter (PM\textsubscript{10} and PM\textsubscript{2.5}, respectively) and ozone (O\textsubscript{3}).

2. Method

2.1 Site details

The Harwell supersite is predominantly surrounded by agricultural land near Didcot, Oxfordshire (lat: 51.571°, lon: −1.325°, altitude: 126 m), 70 km west of London and 20 km south of Oxford (figure 1). The closest minor road is ~400 m to the west and a dual-carriageway (A34) ran ~2 km to the east. The town of Didcot is ~6.4 km to the north-east. Approximately 8 km in the same direction was a coal and oil fired power station (“Didcot A”), formerly a nearby major point source of NO\textsubscript{x} and SO\textsubscript{2} (Abdalmogith et al., 2006; Vieno et al., 2010), that closed on 22nd March 2013 and was demolished in 2016. “Didcot B”, a natural gas power plant on the same site, remains operational. Measurement of atmospheric pollutants at Harwell started in 1976 (UKEAP, 2015) prior to its incorporation as an EMEP level-2 supersite (UNECE, 2004b). Operations ceased on 31st December 2015.

The Chilbolton Observatory site is located ~50 km south of Harwell in an agricultural (mainly arable) landscape, ~200 m south-east of the edge of Chilbolton village, Hampshire (lat: 51.150°, lon: −1.438°, altitude: 78 m) and 100 km south-west of London (Defra, 2018b). Two single-carriageway main roads run ~1 km to the west (A3057), and ~3 km to the south (A30) (figure 1). The site began monitoring as an EMEP level-2 supersite on 11th January 2016, after instrument relocation from Harwell.
Figure 1: (a) Locations of the UK EMEP “supersites” at Auchencorth Moss (pink), Harwell (blue), Chilbolton Observatory (orange) and the meteorological station at Benson (red). (b) Maps of the \(\sim 50 \text{ km} \times 50 \text{ km} \) area surrounding Harwell (top, blue diamond) and Chilbolton (bottom, orange diamond) from OpenStreetMap (https://openstreetmap.org). The boxes surrounding each site show the \(15 \text{ km} \times 15 \text{ km} \) area used for comparisons with the UK National Atmospheric Emissions Inventory (NAEI) based upon the \(5 \text{ km} \times 5 \text{ km} \) resolution of the agricultural NH\(_3\) emissions.
2.2 Measurement data

The full suite of measurements at the two sites is summarised in UK Eutrophying and Acidifying Pollutants (UKEAP) network reports (UK-AIR Library, 2018), a subset of which are investigated in this work (table 1, and Supplementary Information figure S1). Concentration data were downloaded from the UK Department for Environment, Food and Rural Affairs (Defra) online data repository (UK-AIR Data Selector, 2018).

Data are evaluated here for the two years either side of site relocation (Harwell 2014-15 and Chilbolton 2016-17, respectively). Data capture statistics are given in table 1. O₃, NOₓ, SO₂, PM₁₀ and PM₂.₅ measurements derive from the UK Automatic Urban and Rural Network (AURN). Instrumentation selection, calibration and data ratification follow EU Air Quality Directives (2008/50/EC), and data are archived as hourly averages (UK-AIR Library, 2018). Hourly measurements of NH₃ and other trace gases, together with water-soluble ions within PM₂.₅ and PM₁₀, are provided by the Monitor for AeRosols and Gases in Air (MARGA) instrument (EMEP, 2007; Stieger et al., 2017) with data quality assurance processes as described in Twigg et al. (2015).

Hourly meteorological data comprise on-site measurements at Harwell and Chilbolton (CFARR, 2003). Data were also downloaded for the meteorological station at Benson, Oxfordshire (lat: 51.616°, lon: −1.096°, altitude: 57 m), marked on figure 1(a), from the NOAA Integrated Surface Database using the worldmet package (Carslaw, 2017; NOAA, 2018) for the full time period being considered. These data were used to validate use of concatenated meteorological time series from the two supersites (see supplementary information).

2.3 Meteorological detrending

To examine for evidence of a step-change in concentration coincident with site relocation, the deweather function (Carslaw, 2015) was applied to concatenated Harwell and Chilbolton datasets (2014-17) in a technique known as “meteorological normalisation” (Grange et al., 2018). This accounts for non-linear and complex relationships between predictors, such as meteorological or temporal variables (Carslaw et al., 2009), allowing changes in time series not directly caused by these predictors to be identified. Models are built using a stochastic process that results in reduced variance of the final model (Friedman, 2002), but consequently a slightly different model is produced with each run (Elith et al., 2008). A set of 10 identically-
built *dewweather* models were performed for each pollutant time series, using meteorological predictor variables measured at the same site as the pollutants. Further details of the model, including comparisons using different meteorological data, are given in the supplementary information (section S2 and figure S3).

2.4 Emission Inventories

Annual emission estimates for NH$_3$, NO$_x$, SO$_2$, PM$_{2.5}$ and PM$_{10}$ were obtained from the UK National Atmospheric Emission Inventory (NAEI, http://naei.beis.gov.uk/) for both locations. Individual species emissions were taken from the 2015 inventory and were aggregated over the 15 km × 15 km area surrounding each site shown in figure 1. The areas were defined according to the gridded agricultural sector NH$_3$ emissions which have a spatial resolution of 5 km × 5 km, but for all other pollutants the underlying resolution was 1 km × 1 km.

3. Results and discussion

3.1 Overview

Table 1 summarises the annual mean concentration and corresponding 95% confidence interval for each pollutant for each year. Chilbolton MARGA measurements have the lowest data capture (54-58%) since these measurements did not commence until 11th February 2016, and instrument issues led to missing data between 9th July and 1st September 2016. Between August 2014 and September 2015 a plume from the volcanic eruption at Holuhraun, Iceland, passed over the UK and is observed in the SO$_2$ time series (figure S1). Similarly in spring 2014, elevated PM concentrations were caused by a combination of Saharan dust and ammonium nitrate formed from European emissions (Vieno *et al.*, 2016) (figure S1). Other PM episodes are also apparent between 2014 and 2017 (figure S1), typically accumulating in low wind speeds and lasting no more than a few days (Defra, 2015, 2016, 2017).
Table 1: Annual mean concentrations (with 95% confidence intervals) and annual percentage data capture of measurements for the investigated species at Harwell (2014-15), and Chilbolton (2016-17).

<table>
<thead>
<tr>
<th>Species</th>
<th>Instrument</th>
<th>Annual mean concentration ± 95% confidence intervals / μg m(^{-3}) (Data capture / %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(_2)</td>
<td>Monitor for AeRosols and Gases in Air (MARGA)</td>
<td>0.245 ± 0.028 (94%) 0.150 ± 0.0027 (70%) 0.157 ± 0.0044 (58%) 0.131 ± 0.0032 (79%)</td>
</tr>
<tr>
<td>HONO</td>
<td>Monitor for AeRosols and Gases in Air (MARGA)</td>
<td>0.464 ± 0.0068 (94%) 0.340 ± 0.0049 (70%) 0.494 ± 0.011 (58%) 0.454 ± 0.008 (79%)</td>
</tr>
<tr>
<td>HNO(_3)</td>
<td>Monitor for AeRosols and Gases in Air (MARGA)</td>
<td>0.159 ± 0.0029 (94%) 0.138 ± 0.0032 (68%) 0.159 ± 0.0050 (57%) 0.162 ± 0.0037 (80%)</td>
</tr>
<tr>
<td>NH(_3)</td>
<td>Monitor for AeRosols and Gases in Air (MARGA)</td>
<td>1.96 ± 0.049 (95%) 2.05 ± 0.044 (70%) 5.88 ± 0.22 (54%) 6.23 ± 0.18 (82%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Instrument</th>
<th>Annual mean concentration ± 95% confidence intervals / μg m(^{-3}) (Data capture / %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(_3)</td>
<td>UV absorption</td>
<td>56.0 ± 0.45 (99%) 57.1 ± 0.42 (98%) 48.9 ± 0.53 (97%) 51.5 ± 0.48 (98%)</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>Chemiluminescence</td>
<td>10.5 ± 0.30 (97%) 9.20 ± 0.22 (97%) 18.5 ± 0.49 (91%) 13.8 ± 0.35 (97%)</td>
</tr>
<tr>
<td>NO(_2)</td>
<td>Chemiluminescence</td>
<td>7.99 ± 0.20 (97%) 7.68 ± 0.16 (97%) 14.3 ± 0.25 (91%) 11.2 ± 0.19 (97%)</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>TEOM-FDMS</td>
<td>14.3 ± 0.27 (74%) 15.1 ± 0.21 (89%) 14.9 ± 0.25 (85%) 13.3 ± 0.19 (98%)</td>
</tr>
<tr>
<td>PM(_{2.5})</td>
<td>TEOM-FDMS</td>
<td>9.06 ± 0.19 (96%) 8.55 ± 0.17 (96%) 9.45 ± 0.19 (93%) 7.38 ± 0.17 (98%)</td>
</tr>
<tr>
<td>SO(_2)</td>
<td>UV fluorescence</td>
<td>1.01 ± 0.054 (98%) 0.939 ± 0.013 (93%) 0.876 ± 0.017 (64%) 0.763 ± 0.013 (89%)</td>
</tr>
</tbody>
</table>

3.2 NO\(_x\)

The average 2016 and 2017 concentration of NO\(_x\) at Chilbolton was approximately 1.6 times greater than the average 2014 and 2015 concentration at Harwell (annual means of 18.5 and 13.8 μg m\(^{-3}\) c.f. 10.5 and 9.20 μg m\(^{-3}\) respectively, table 1). The NO\(_x\) deweather time series also shows an abrupt increase coincident in timing with the relocation of the measurement site (figure 2(a)).

In contrast to the greater average NO\(_x\) concentrations at Chilbolton, the total local NO\(_x\) emissions integrated over the 15 km × 15 km area around Harwell are more than 5 times greater than from the same-size area around Chilbolton (figure 3). The NO\(_x\) emissions close to Harwell are dominated by specific sources including Didcot town, Didcot B power station in the north-
east, and a high traffic flow on the dual-carriageway (A34) running north-south 2 km to the east. Across the 225 individual 1 km × 1 km grid squares within the area surrounding Harwell, 47% of total local emissions are contributed by the grid square with the highest emissions, whilst the 25 highest emission grid squares contribute 84%. Similar analysis at Chilbolton show less dominance of local emissions from the single highest (6%) and 25 highest (61%, including part of the A303, ~8 km north) grid squares.

![Modelled pollutant concentrations](image)

Figure 2: Modelled pollutant concentrations of (a) NO\(_x\), (b) NH\(_3\), (c) PM\(_{2.5}\), (d) PM\(_{10}\) and (e) O\(_3\) predicted using the *deweather* function for R (Carslaw, 2015) applied to concatenated time series of hourly measurements at Harwell until 31\(^{st}\) December 2015 and at Chilbolton from 11\(^{th}\) January 2016. Modelled data have been smoothed by plotting the daily mean predicted concentration.
These differences in NO\textsubscript{x} source configurations are illustrated by pollution wind roses (figure 4). The aforementioned sources north of Harwell generate the most polluted air transported to the site, but do not contribute significantly more to the annual average than other directions. Considering NO\textsubscript{x} to have an atmospheric lifetime of ~4-6 h in the mid-latitudes (Beirle et al., 2011) and an average wind speed of ~15 km h-1 for southern England (figure S2; CFARR, 2003; NOAA, 2018), the London pollution plume could plausibly be observed at both sites. It appears Harwell is less influenced by London (~100° bearing) than Chilbolton (~70°), for which this wind direction provides a dominant contribution to the annual average. However the M3 motorway also contributes NO\textsubscript{x} to this wind direction, stretching for ~56 km between Chilbolton and London. Traffic along the length of the M3 (~95 km) and other major roads are the probable reason why a larger average concentration of NO\textsubscript{x} (>2.2 times higher) is observed in easterly (0-180°) than in westerly winds (181-360°, table 2). More frequent westerly winds during 2017 led to a reduced annual average compared with 2016 (13.8 c.f. 18.5 μg m-3).
Table 2: Annual mean concentrations of hourly NO\textsubscript{x} measurements for easterly (0-180°) and westerly (181-360°) wind directions. The remaining percentage of data (% NA) includes hours where NO\textsubscript{x} concentration or wind direction were not recorded.

<table>
<thead>
<tr>
<th>Site and year</th>
<th>Mean NO\textsubscript{x} concentration / μg m-3</th>
<th>Percentage of total annual wind / %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Westerly</td>
<td>Easterly</td>
</tr>
<tr>
<td>Harwell 2014</td>
<td>11.1</td>
<td>10.0</td>
</tr>
<tr>
<td>Harwell 2015</td>
<td>10.5</td>
<td>8.60</td>
</tr>
<tr>
<td>Chilbolton 2016</td>
<td>12.0</td>
<td>28.6</td>
</tr>
<tr>
<td>Chilbolton 2017</td>
<td>10.2</td>
<td>22.6</td>
</tr>
</tbody>
</table>

The importance of wind direction to NO\textsubscript{x} concentrations at both sites is reflected in the relative importance of variables used in the deweather models (table S2). Wind direction had the largest mean relative importance of 19.1%, closely followed by ambient temperature (18.7%) and (long-term) trend (18.4%). Unsurprisingly, predicted concentrations of NO\textsubscript{x} are elevated at
lower ambient temperatures (≤10 °C) and during colder months (October-February), as these conditions limit the dispersion of emissions (AQEG, 2004), and there is a higher demand for domestic heating. The importance of the trend variable is a consequence of the abrupt increase in NOx at the time of site relocation in the concatenated deweather time series (figure 2(a)). This supports the interpretation of a real difference in annual mean NOx concentration between Harwell and Chilbolton.

3.3 NH3

The annual mean NH3 concentrations at Chilbolton in 2016 and 2017 (5.88 and 6.23 μg m⁻³, respectively, table 1) are about 3 times higher than at Harwell in 2014 and 2015 (1.96 and 2.05 μg m⁻³, respectively), the greatest difference of all pollutants investigated. Although data capture at Chilbolton in 2016 was rather low (58%), and most missing data occurred during the summer (figure S1) when NH3 concentrations are typically larger (Tang et al., 2018), therefore the annual average in 2016 is likely biased low by the missing data.

Application of the deweather model to the concatenated time series of NH3 concentrations (figure 2(b)) confirms a distinct increase in mid-February 2016, coincident with commissioning of the MARGA at Chilbolton. Trend is the dominant variable in the deweather model (45.5 ± 0.6%, figure S4 and table S2). The raw time series shows elevated springtime concentrations at Harwell (figure S1), consistent with typical livestock manure and synthetic fertiliser applications observed in NW European springtime (Vieno et al., 2016). These springtime peaks are mirrored in the predicted concentrations of NH3 during 2014 and 2015, and reflected by the partial dependency of the week-of-year variable predicting increased concentrations during Julian weeks 5-20 (figure S4). Following site relocation the deweather time series showed NH3 concentrations remaining high, with large and infrequent peaks that demonstrate little seasonality. Despite this, maximum hourly NH3 at Chilbolton in 2016 and 2017 were during spring (126 μg m⁻³ on 22nd March 2016 and 94.4 μg m⁻³ on 24th May 2017).

Ammonia has a short atmospheric lifetime and high spatial heterogeneity in its sources (Vogt et al., 2013; Dammers et al., 2017), so receptor concentrations are significantly influenced by local emissions. The contrasting concentrations at Harwell and Chilbolton are not reflected in the total NAEI estimates of local NH3 emissions, which show similar averages over the 15 km × 15 km area surrounding each site (figure 3). However, the total at Harwell includes
contribution from a disproportionately large 1 km × 1 km grid square over the site of Didcot B power station, over 3.4 times greater than any other grid square surrounding either site. When emissions from only the agricultural sector are considered, the greatest emissions are associated with the 5 km × 5 km grid square also containing the site, suggesting the presence of a nearby agricultural source or sources.

Figure 5: Polar plots of hourly NH$_3$ concentration (MARGA) as a function of hourly wind speed and direction at Harwell 2015 (left) and Chilbolton 2016 (right). Wind and NH$_3$ concentration measurements were co-located.

Polar plots of NH$_3$ concentration as a function of wind speed and direction for both sites (figure 5) reveal an obvious dominant local source to the south-west of Chilbolton. Figure 6 demonstrates the difference in concentration between this source and background NH$_3$ at Chilbolton in 2016, by dividing prevailing wind into four direction sectors: east (E, 30-180°), south-west (SW, 180-250°), north-west (NW, 250-350°) and north (N, 350-30°). The N sector appears to reflect background NH$_3$ levels, with a mean concentration of 2.2 μg m$^{-3}$, comparable to average NH$_3$ concentrations measured at Harwell across all wind directions (figure 5). Mean concentrations in E, NW and SW sectors are higher (3.1, 3.4 and 7.1 μg m$^{-3}$, respectively) and demonstrate an inverse relationship with wind speed, suggesting nearby sources at Chilbolton. Approximately 1.5 km from the site in the SW sector is the centre of a cattle farm, whilst a further 1.5 km in the same direction is a mushroom farm, likely to release NH$_3$ at regular intervals coinciding with mushroom growth cycles (Sather et al., 2008). For the remaining E/NW sectors, NH$_3$ concentrations presumably reflect levels associated with the surrounding
intensively managed arable land, which in general are larger emitters than agricultural activities near Harwell.

Figure 6: Hourly NH$_3$ concentrations (MARGA) as a function of wind speed at Chilbolton in 2016, for the four wind direction sectors: north (350-30°), south-west (180-250°), east (30-180°) and north-west (250-350°). Data points are medians of 50 hourly measurements sorted by ascending wind direction, following Flechard et al. (1998).

3.4 SO$_2$

Hourly SO$_2$ concentrations at both sites are determined by two different measurement methodologies (table 1) but there was poor agreement between them (figure S5). This is anticipated, as the limit of detection (LOD) of the UV fluorescence analyser (1.5 ppb, ~4 μg m$^{-3}$) is approximately two orders of magnitude greater than that of the MARGA (0.04 μg m$^{-3}$) (Makkonen et al., 2012). The aim of the AURN SO$_2$ analysers is to detect pollution events (Twigg et al., 2016) where concentrations could exceed national/EU limit values (hourly and daily means of 350 and 125 μg m$^{-3}$), whereas the MARGA is designed to monitor changes in background concentrations of SO$_2$. Extending the time series of SO$_2$ measurements at Harwell back to 2012 shows that there was a large reduction in concentrations in early 2013 (figure 7), coincident with the closure of Didcot A coal and oil power station, which whilst operational was one of the largest SO$_2$ emission sources in the UK (Vieno et al., 2010). Following this
event there are no discernible changes in SO$_2$ concentration, including through the site relocation, apart from a singular peak in August 2014 which can be attributed to an Icelandic volcanic eruption (Twigg et al., 2016). Whilst the emission inventory estimates greater local SO$_2$ emissions around Harwell than around Chilbolton (figure 3), these are overwhelmingly dominated at Harwell by Didcot B power station. The relative infrequency of north-easterly wind to the site, coupled with the elevated source of these emissions, resulted in little influence of Didcot B on ambient measured concentrations. Consequently, there is effectively no change in measured SO$_2$ arising from the site relocation.

Figure 7: Time series from 1st January 2012 to 30th September 2017 of hourly SO$_2$ concentrations measured using UV fluorescence in the AURN (red), and by the MARGA (blue). Vertical dotted lines show the closure of Didcot A power station (22nd March 2013), the volcanic eruption plume from Holuhraun, Iceland passing over the UK (September 2014) and the site relocation from Harwell to Chilbolton in early January 2016.

3.5 Particulate Matter

Data capture was high for total PM$_{10}$ and PM$_{2.5}$ (table 1), but poorer for the individual species concentrations. Annual mean concentrations of PM$_{10}$ and PM$_{2.5}$ were similar at Harwell and Chilbolton (2014 & 2015 average PM$_{10}$ = 14.7 μg m$^{-3}$, 2016 & 2017 average PM$_{10}$ = 14.1 μg m$^{-3}$; equivalent data for PM$_{2.5}$ = 8.8 and 8.4 μg m$^{-3}$), indicating no substantive change in long-term mean PM concentration at the time of site relocation. There was also no significant
difference in the number of PM$_{10}$ daily mean exceedances of 50 μg m$^{-3}$ before and after site relocation: twice each year at Harwell, 3 times at Chilbolton in 2016 and once in 2017.

The *deweather* models for both PM$_{2.5}$ and PM$_{10}$ (figures 2(c) and (d)) show temporal variability, but no evidence of a significant step-change in concentration at the time of site relocation. The model predicted lower concentrations of PM$_{10}$ in June 2016 because measured values in this period 12th June – 31st July 2016 (mean of 7.6 μg m$^{-3}$) were substantially lower than the mean for the rest of the time series (14.4 μg m$^{-3}$). There is a similar effect in the modelled PM$_{2.5}$ time series. Model disagreement in the latter part of the PM$_{2.5}$ *deweather* time series is presumed to be due to the presence of a large measurement value (186.8 μg m$^{-3}$, 27th April 2017), almost twice any other hourly PM$_{2.5}$ concentration. The stochastic nature of the *deweather* function resulted in some models being built using this data point, while others were not.

The annual NAEI emissions integrated over the 15 km \times 15 km area surrounding each site are substantially greater around Harwell than Chilbolton for both PM$_{10}$ and PM$_{2.5}$ (figure 3). Locations of high PM$_{2.5}$ emissions within the area surrounding Harwell include those with substantial NO$_x$ emissions (Didcot town, Didcot B power station and the A34). The 25 1 km2 grid squares with highest PM emissions around Harwell contribute 63% to the total, whereas the equivalent at Chilbolton contribute 54%. As with NO$_x$, an increase in PM$_{2.5}$ concentrations is observed in the prevailing easterly wind at Chilbolton as compared to Harwell (13.2 in 2016 c.f. 8.1 μg m$^{-3}$ in 2015, table S3), however westerly winds have lower concentrations (6.8 c.f. 9.6 μg m$^{-3}$), which accounts for the comparable annual averages pre- and post- relocation. The same conclusions apply for PM$_{10}$ (figure S6).
Data capture for MARGA measurements were poorer than for TEOM-FDMS measurements (table 1). Nevertheless for all secondary inorganic aerosol (SIA) ions analysed, the data capture rate was sufficient for comparisons of annual measurements (all years >58%). Anthopogenically-derived NH$_4^+$, NO$_3^-$ and SO$_4^{2-}$ dominate PM$_{2.5}$ at both sites, contributing an average of 58% to total measured mass at Harwell (2014-15) and 59% at Chilbolton (2016-17). The calculated SIA ion balance for PM$_{2.5}$ (figure 8) shows good correlation for all years, despite a few events of exception. More acidic aerosols are observed in 2014, with the greatest excess in September where concentrations of SO$_4^{2-}$ were significantly elevated from the Holuhraun eruption plume passing over the UK (Twigg et al., 2016). Both years at Chilbolton exhibit a
large excess of basic aerosol on days reaching high NH$_4^+$ concentrations (8.64 and 22.6 μg m$^{-3}$ on 22$^{\text{nd}}$ March 2016 and 11$^{\text{th}}$ March 2017 respectively; table 3). In general, all years appear to have a slight bias towards basic aerosol, and are comparable to observations at the northern UK EMEP supersite (Auchencorth Moss; Twigg et al. 2015). Similar observations apply to the coarse fraction (PM$_{\text{coarse}} = \text{PM}_{10} – \text{PM}_{2.5}$), where SIA contributes 15% to total aerosol mass at both Harwell (2014-15) and Chilbolton (2016-17). Annual average black carbon measurements (Aethalometer, Black Carbon Network) are comparable at ~0.40 μg m$^{-3}$ between Harwell (2014-15) and Chilbolton (2016-17). Given the comparable total PM at both sites, this indicates that there is also a similar contribution of secondary organic aerosols (SOA) in both fractions.

Table 3: Annual mean particulate NH$_4^+$, NO$_3^-$ and SO$_2^{2-}$ concentrations measured by MARGA in PM$_{10}$ and PM$_{2.5}$. Key: max = maximum hourly measurement of the year, μ_A = arithmetic annual mean and σ_A = arithmetic standard deviation across the year.

<table>
<thead>
<tr>
<th></th>
<th>2014 μg m$^{-3}$</th>
<th>2015 μg m$^{-3}$</th>
<th>2016 μg m$^{-3}$</th>
<th>2017 μg m$^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$</td>
<td>NH$_4^+$</td>
<td>NO$_3^-$</td>
<td>SO$_2^{2-}$</td>
<td>NH$_4^+$</td>
</tr>
<tr>
<td>max</td>
<td>15.2</td>
<td>47.4</td>
<td>29.9</td>
<td>13.2</td>
</tr>
<tr>
<td>μ_A</td>
<td>1.25</td>
<td>2.62</td>
<td>1.87</td>
<td>0.94</td>
</tr>
<tr>
<td>σ_A</td>
<td>1.75</td>
<td>4.17</td>
<td>2.20</td>
<td>1.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2014 μg m$^{-3}$</th>
<th>2015 μg m$^{-3}$</th>
<th>2016 μg m$^{-3}$</th>
<th>2017 μg m$^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>NH$_4^+$</td>
<td>NO$_3^-$</td>
<td>SO$_2^{2-}$</td>
<td>NH$_4^+$</td>
</tr>
<tr>
<td>max</td>
<td>16.0</td>
<td>50.9</td>
<td>31.4</td>
<td>13.8</td>
</tr>
<tr>
<td>μ_A</td>
<td>1.31</td>
<td>2.97</td>
<td>2.02</td>
<td>0.98</td>
</tr>
<tr>
<td>σ_A</td>
<td>1.82</td>
<td>4.42</td>
<td>2.32</td>
<td>1.51</td>
</tr>
</tbody>
</table>

3.6 Ozone

Data capture for hourly O$_3$ concentrations was high (>98% for each year, table 1). Annual mean concentrations of O$_3$ were somewhat lower after the site relocation, 48.9 and 51.5 μg m$^{-3}$ for 2016 and 2017 respectively at Chilbolton, compared with 56.0 and 57.1 μg m$^{-3}$ for 2014 and 2015 at Harwell (table 1). However, the deweather model time series for O$_3$ data (figure 2(e)) does not show evidence of a step-change associated with the site relocation (the modelled decrease in mid-2016 is coincident with the similar observation for PM). The slightly lower annual mean background O$_3$ at Chilbolton than at Harwell may be due to interannual variability.
in O$_3$, but the lower background concentration is also consistent with an inverse concentration relationship with the unambiguously higher background NO$_x$ at Chilbolton.

4. Conclusions

The relocation of the southern UK EMEP supersite from Harwell to Chilbolton in January 2016 has not resulted in discontinuities in average measured concentrations of PM$_{2.5}$, PM$_{10}$, SO$_2$ and O$_3$ (based on two-year pre- and post-relocation time comparisons), but has led to substantial increases in average concentrations of NO$_x$ and NH$_3$, by a factor of ~1.6 and ~3, respectively.

Concentrations of NO$_x$ and PM in easterly wind arriving at Chilbolton are ~2.7 and ~1.5 times larger than at Harwell, from common sources including the M3 motorway and Greater London. Prevailing winds from the west contribute similar NO$_x$ concentrations at both sites, therefore despite a higher frequency of westerly wind at Chilbolton, the larger easterly concentrations result in larger annual means. Westerly winds carry lower concentrations of PM to Chilbolton than Harwell, thereby resulting in similar annual averages. Measurements show no substantive difference in the contribution of secondary inorganic aerosols (SIA) and black carbon to the total PM mass between the two site locations, although more NH$_4^+$ events are observed in the SIA at Chilbolton. Background concentrations of NH$_3$ at both sites reflect the presence of mixed farmland; however the contribution of very strong local sources to the south-west of Chilbolton cause the large increase in annual average between sites.

In conclusion, when considering long-term regional trends based on the southern UK supersite data, the increase in NO$_x$ and NH$_3$ at Chilbolton must be taken into account and the Harwell and Chilbolton datasets should be treated separately.
Acknowledgements

HLW acknowledges studentship funding from the Natural Environment Research Council Centre for Ecology & Hydrology co-funding of Environment Agency Contract grant NEC05967 and the University of Edinburgh School of Chemistry. The authors acknowledge the UK Department for Environment, Food and Rural Affairs (Defra) and the Devolved Administrations for maintaining instrument operations (ECM48524). AURN data from https://uk-air.defra.gov.uk are Crown copyright and licenced under the terms of the Open Government Licence.

References

Dammers, E., Schaap, M., Haaima, M., Palm, M., Kruit, R. J. W., Volten, H., Hensen, A.,
Swart, D. and Erisman, J. W.: Measuring atmospheric ammonia with remote sensing
campaign: Part 1 - Characterisation of vertical ammonia concentration profile in the

Defra: Department for Environment Food and Rural Affairs - UK AIR: Site Information for

Defra: Department for Environment Food and Rural Affairs - UK AIR: Site Information for

Elith, J., Leathwick, J. R. and Hastie, T.: A working guide to boosted regression trees, J.

Fagerli, H. and Aas, W.: Trends of nitrogen in air and precipitation: Model results and

meteorological control of ambient ammonia concentrations and the influence of local

Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E. and Hueglin, C.: Random forest
meteorological normalisation models for Swiss PM10 trend analysis, Atmos. Chem.

Joly, M. and Peuch, V. H.: Objective classification of air quality monitoring sites over

Stieger, B. *et al.*: Measurements of PM$_{10}$ ions and trace gases with the online system MARGA at the research station Melpitz in Germany – A five-year study, *J. Atmos. Chem.*, 1–38, 2017.

Tørseth, K., Aas, W., Breivik, K., Fjaeraa, A. M., Fiebig, M., Hjellbrekke, A. G., Myhre, C.

