Edinburgh Research Explorer

Multi-shot Echo Planar Imaging for accelerated Cartesian MR Fingerprinting: an alternative to conventional spiral MR Fingerprinting

Citation for published version:
https://doi.org/10.1016/j.mri.2019.04.014

Digital Object Identifier (DOI):
10.1016/j.mri.2019.04.014

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Magnetic Resonance Imaging

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Multi-shot Echo Planar Imaging for accelerated Cartesian MR Fingerprinting: an alternative to conventional spiral MR Fingerprinting

Arnold Julian Vinoj Benjamin
Pedro A. Gómez
Mohammad Golbabae
Zaid Mahbub
Tim Sprenger
Marion I. Menzel
Mike Davies
Ian Marshall

Abstract

Purpose: To develop an accelerated Cartesian MRF implementation using a multi-shot EPI sequence for rapid simultaneous quantification of T1 and T2 parameters.

Methods: The proposed Cartesian MRF method involved the acquisition of highly subsampled MR images using a 16-shot EPI readout. A linearly varying flip angle train was used for rapid, simultaneous T1 and T2 quantification. The results were compared to a conventional spiral MRF implementation. The acquisition time per slice was 8 s and this method was validated on two different phantoms and three healthy volunteer brains in vivo.

Results: Joint T1 and T2 estimations using the 16-shot EPI readout are in good agreement with the spiral implementation using the same acquisition parameters (deviation less than 4% for T1 and less than 6% for T2). The T1 and T2 values also agree with the conventional values previously reported in the literature. The visual qualities of fine brain structures in the multi-parametric maps generated by multi-shot EPI-MRF and Spiral-MRF implementations were comparable.

Conclusion: The multi-shot EPI-MRF method generated accurate quantitative multi-parametric maps similar to conventional Spiral-MRF. This multi-shot approach achieved considerable k-space subsampling and comparatively short TRs in a similar manner to spirals and therefore provides an alternative for performing MRF using an accelerated Cartesian readout; thereby increasing the potential usability of MRF.

Keywords: Cartesian MRF; multi-shot EPI; quantitative maps; iterative reconstruction

Abbreviations:
MRF, Magnetic Resonance Fingerprinting; EPI, echo planar imaging; TR, repetition time.

1. Introduction

Quantitative MRI (q-MRI) is fast emerging as a clinically useful modality in diagnostic MR imaging because these images provide clinicians additional information that helps in more accurate diagnosis, improved disease monitoring and better treatment planning [1, 2, 3]. Quantitative parameters like proton density (PD), T1 and T2 relaxation times, etc. vary for normal and abnormal tissues and can give an indication of neurodegenerative disorders in the brain that are not readily detectable from conventional structural MR images [4, 5, 6]. The estimation of tissue parameters helps in greater tissue discrimination, segmentation and classification to improve disease detection and monitoring. For example, T1 mapping has various applications such as the detection of neurodegenerative disorders like multiple sclerosis (MS) [7], Alzheimer’s disease [8], assessment of myocardial infarction [9] and characterizing fiber bundle anatomy in diffusion MRI [10] while T2 mapping is used for applications in ageing and cognitive decline [11], quantification of myocardial edema [12] and evaluation of articular cartilage damage in the knee [13, 14]. However, clinical time constraints...
have prevented the widespread clinical use of parametric mapping techniques [15, 16]. Recent emergence of rapid parametric mapping techniques such as Magnetic Resonance Fingerprinting (MRF) [17] and its various extensions [18, 19, 20] have shown that it is possible to generate multiple quantitative parametric maps simultaneously in a very short scan duration that is clinically feasible. MRF offers a new approach to simultaneously quantify multiple tissue properties rapidly within a single scan by acquiring the transient-state signal that is sensitive to multiple imaging parameters such as flip angle (FA) and repetition time (TR). Acquiring a series of subsampled images rapidly while constantly varying imaging parameters leads to spatial and temporal incoherence resulting in characteristic signal evolutions, which depend on the physical properties of the underlying tissue, such as relaxation times. The unique signal evolutions or ‘fingerprints’ are matched to a precomputed dictionary to generate multiparametric quantitative maps.

The first MRF implementation was able to simultaneously quantify T1, T2 and off-resonance effects and was based on a balanced steady state free precession (bSSFP) sequence which was sensitive to field inhomogeneities and produced banding artefacts [17]. These effects were mitigated by the use of an unbalanced steady state free precession sequence (SSFp) for multi-parametric quantification [18, 21, 22, 23]. The most commonly used sampling strategy in MRF is interleaved spiral sampling because it allows considerable subsampling of k-space and also provides more control for efficient traversal of the k-space trajectory [17, 18]. Despite its numerous advantages, the spiral sampling scheme has been shown to be susceptible to gradient inaccuracies [24] and high frequency artefacts due to non-sampling of k-space corners [25] and its availability is limited which prevents its widespread use in clinical protocols [26].

Cartesian sampling schemes for MRF primarily based on single-shot Echo Planar Imaging (EPI) that have been proposed are promising but are not a like-for-like comparison with the spiral sampling strategy for MRF [27, 28, 29, 30, 31]. This is because single-shot EPI implementations do not allow subsampling in a similar manner to the spiral scheme and therefore the entire k-space has to be traversed for every frame during acquisition. This results in much longer TRs than would be achievable with spiral sampling and also places a burden on the gradient performance of the scanner due to the short echo spacing necessary to minimise image distortions in single-shot EPI [32]. Simulation results show that shorter TRs result in better T1 and T2 sensitivity for certain MRF sequences (see supplementary material).

In this study, a multi-shot EPI-MRF approach is proposed that not only allows considerable k-space subsampling but can also achieve shorter TRs that are comparable to conventional Spiral-MRF implementations in a sufficiently short scan duration. Multi-shot EPI can yield better SNR, reduced blurring and lower ghost intensity while it also reduces the burden on gradients and RF hardware such as gradient amplitude and slew rate compared to single-shot EPI [32, 33]. It also has the advantage of reduced distortions due to magnetic field inhomogeneity [34]. Unlike Spiral-MRF, multi-shot EPI-MRF has a solid theoretical basis in terms of compressed sensing theory [35, 36].

A multi-shot EPI readout is used in this study to generate accurate T1 and T2 maps and compared with Spiral-MRF. An Iterative Projection Algorithm (IPA) called BLoch matching response recovery through Iterated Projection (BLIP) is used to improve the accuracy of the generated parametric maps [35, 36]. Sequence parameters such as RF pulse, Inversion Time, FA train, TR and bandwidth are identical for both EPI-MRF and Spiral-MRF experiments in order to quantitatively assess the conformity of both methods.

2. Methods

2.1. Pulse Sequence Design

The original MRF paper that was based on a bSSFP sequence was sensitive to banding artefacts [17]. In order to overcome this, Jiang et al. [18] suggested the use of an unbalanced SSFP sequence also sometimes called FISP sequence. In the multishot EPI-MRF method introduced here, we also used an unbalanced SSFP sequence but we made the following changes compared to previous papers:

(i) a variable flip angle ramp instead of a pseudorandom FA schedule was used to improve the T1 and T2 quantification efficiency in fewer number of repetitions (N) [23] than the original FISP-MRF sequence [18]. Figure 1 shows the T1-T2 sensitivity of exemplary values of grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) at 3T that were simulated for the unbalanced SSFP sequence using the Extended Phase Graph (EPG) model for two different FA schedules, namely:

\[\text{a) Linear Ramp FA Pattern from } 1^\circ \text{ to } 70^\circ \text{ with } N = 500 \text{ repetitions and b) Pseudorandom FA pattern with } N = 1000 \text{ repetitions that was used by Jiang et al. [18].} \]

The sensitivity is defined as the correlation coefficient (i.e. the normalized inner product) measuring the correlation between a query T1-T2 pair within the dictionary and the responses for a range of T1-T2 values. It depends on the shape of the magnetization response and is a function of the flip angle schedule, number of repetitions, TR, Echo Time (TE), Inversion Time (TI) and the readout time. The sensitivity plots are calculated using the same EPG model used to construct the dictionary which is mathematically described in [37, 38]. Figure 1 also shows that by using the Linear Ramp FA pattern, a very similar T1-T2 sensitivity for GM and WM is achieved in only half the number of repetitions and a significantly better T1-T2 sensitivity for CSF can be achieved when compared to the pseudorandom FA pattern. The FA was incremented by \((70 - 1)^\circ /500 = 0.138^\circ\) for every repetition.

(ii) a subsampled Cartesian readout (with readout time 6.976 ms) using 16-shot EPI (see Fig. 2a) was used to eliminate gridding, perform faster reconstruction and avoid high frequency artefacts that appeared in spiral readouts due to the non-sampling of k-space corners as shown by Cline et al. [25].
2.2. Sequence Parameters

The scanning was performed on a 3T GE MR750w scanner with a 12 channel receive only head RF coil (GE Medical Systems, Milwaukee, WI). The study was approved by the local ethics committee. Both EPI-MRF and Spiral-MRF data were acquired from phantom and healthy volunteer brains using the variable FA ramp that has been described in section 2.1.

The EPI-MRF acquisition used about 58.72% of the readout time (i.e. 4.096 ms) to collect 8 unique lines of k-space data for every shot. A reference scan with the EPI blips turned off was performed for phase correction of EPI raw data. Gradient spoiling of about three and a half cycles was introduced by the spoiler gradient Gz (see Fig. 2a) to make it an unbalanced SSFP acquisition. The zero order gradient moments for Gx, Gz and Gxy were nulled towards the end of every readout (between 6.464 ms and 6.976 ms) to ensure constant magnetization for each shot throughout the acquisition (see Fig. 2b).

A variable density spiral trajectory with 89 interleaves was used to collect Spiral-MRF data. Each interleave was rotated by a golden-ratio angle (i.e. 111.246°). The duration of spiral readout was 4.096 ms. No reference measurements were made for the spiral trajectory.

The minimum achievable TR for EPI (i.e. 16 ms) was used for both EPI-MRF and Spiral-MRF acquisitions for fair comparison even though the TR could be further reduced for Spiral-MRF. Both acquisitions had bandwidth (BW) = 250 kHz, Field of View (FOV) = 22.5 x 22.5 cm², 128 x 128 matrix size and 5 mm slice thickness. A global inversion pulse with TI = 18 ms was used at the beginning of the acquisition to increase the T1 sensitivity of the sequence. The TE was 2 ms and 3.488 ms respectively for the spiral and EPI acquisitions. TE is defined as the time at which the centre of k-space is sampled and is assumed to be constant for every shot (approximately half the readout time). The acquisition time for a single slice was 8 s.

2.3. Phantom Scans

16-shot EPI-MRF and Spiral-MRF datasets using a variable FA ramp [23] were acquired for 500 repetitions from a gel based phantom (Diagnostic Sonar, Livingston, UK) which consisted of 12 tubes, each having different T1 and T2 values. The gels were made from agarose doped with gadolinium which represent an ideal test material for MR imaging studies as gels with any desired T1 and T2 value can be produced by varying the material composition. Reference T1 and T2 values measured under controlled conditions were provided by the manufacturer and were used for comparison with the multiparametric values estimated by the two MRF methods (i.e. EPI-MRF and Spiral-MRF).

2.3.1. Gold Standard T1 and T2 Spin Echo Measurements

The T1 and T2 values of the phantom were characterized by using the gold standard Inversion Recovery Spin Echo sequence for T1 estimation and single echo spin echo method (SE) for T2 estimation. These values were compared to the T1 and T2 values estimated by EPI-MRF and Spiral-MRF.

The T1 values of the different tubes in the phantom were measured by the IR-SE sequence with 32 inversion times ranging from 0.05 s to 4 s, parallel imaging ASSET factor 2, TR of 12 s, a matrix size of 128 x 128, FOV of 22.5 cm, and a slice thickness of 5 mm. The scan time for each T1 experiment was 12.8 minutes and the total scan time for the entire gold standard T1 experiment was 409.6 minutes. To calculate T1 values, pixel-based nonlinear least-squares curve fitting was used to fit the magnitude of the IR-SE images to

\[M_z(T1) = M_0(1 - e^{-\frac{TE}{T1}}) \]

where, \(M_0 \) is the magnetization at thermal equilibrium, \(M_z \) is the longitudinal magnetization that depends on the Inversion Time (TI) and T1 relaxation time of the IR-SE experiment.

The T2 values were measured by multiple single echo spin echo experiments with 12 echo times ranging from 0.02 s to 1 s, parallel imaging ASSET factor 2, TR of 12 s, a matrix size of 128 x 128, FOV of 22.5 cm, and a slice thickness of 5 mm. The scan time for each SE experiment was 12.8 minutes and the total scan time for the entire gold standard T2 experiment was 153.6 minutes. To calculate T2 values, the magnitude values from the multiple single echo spin echo images were fit to

\[M_0(TE) = M_0e^{-\frac{TE}{T2}} \]

where, \(M_0 \) is the magnetization at thermal equilibrium, \(M_{xy} \) is the transverse magnetization that depends on the Echo Time (TE) and T2 relaxation time of the SE experiment.

2.4. Healthy Volunteer Brain Scans

16-shot EPI-MRF and Spiral-MRF datasets were acquired from three healthy volunteer brains using the linear ramp FA schedule from 1° to 70° for 500 repetitions. The T1 and T2 values estimated by EPI-MRF and Spiral-MRF methods from healthy volunteer brains were compared with conventional T1 and T2 values previously reported in literature [39] and also to T1 and T2 values estimated by an established Spiral-MRF method with pseudorandom FA variation [18]. WM and GM regions were extracted from the healthy volunteer brain images to calculate the accuracy of T1 and T2 quantification. The segmentation was performed by thresholding using the T1 maps. The overall structures of GM and WM were largely captured by the thresholding process. The Matlab Image Processing Toolbox was used for segmentation.

2.5. Reconstruction

The MRF dictionary of magnetic resonance responses was pre-computed offline using a Matlab implementation of the EPG formalism [37, 38]. The EPG model is an efficient computational tool for quantitative simulations of signals [37, 18, 21] obtained from various MRI pulse sequences and is also widely used for characterizing signal evolutions in sequences used for relaxometry (i.e. characterizing relaxation parameters) [40, 41].
This model is used to numerically compute the dictionary for MRF sequences by effectively modelling the pathways that lead to the formation of echoes [23, 21, 42]. A high resolution dictionary having a total of 23866 dictionary atoms was used with T1 values ranging from 40 ms to 2 s in steps of 20 ms and 2 s to 6 s in steps of 100 ms. The T2 values ranged from 20 ms to 120 ms in steps of 1 ms, 120 ms to 200 ms in steps of 2 ms and 200 ms to 600 ms in steps of 10 ms. The inner product of each of the dictionary atoms and the measured response for each pixel was first computed and the parametric values of the dictionary atom that had the maximum correlation with the measured response was assigned to each pixel.

The dictionary was computed in approximately 5 minutes on a typical laptop computer with standard specifications (i.e. Intel Core i7 Processor with 16GB RAM). Figure 3 illustrates the sensitivity of a subset of the dictionary elements. The T1 sensitivity (16 fingerprints of dictionary elements with varying T1 ranging from 100 ms to 700 ms in steps of 40 ms and constant T2 = 100 ms) and T2 sensitivity (17 fingerprints of dictionary elements with varying T2 ranging from 20 ms to 100 ms in steps of 5 ms and constant T1 = 1000 ms) of the sequence for discriminating dictionary elements using a linear ramp FA variation from 1° to 70° are shown for 500 frames. Figure 3a shows that the T1 sensitivity is high throughout the acquisition and is enhanced by the initial inversion pulse whereas Figure 3b shows that the T2 sensitivity occurs mostly at higher flip angles (> 20°). Therefore, higher flip angles are needed for efficient T2 discrimination.

The reconstruction was done entirely in Matlab using the code adapted from the works by Ma et al. [17] and Davies et al. [35, 36]. Two classes of reconstruction were considered: an IPA reconstruction that included Singular Value Decomposition (SVD) Compression in the Time Domain [43, 25, 44, 45]; and Dictionary matching (DM) sometimes called Matched Filter reconstruction as proposed in the original work on MRF [17], which is equivalent to a single iteration of the IPA reconstruction. The IPA reconstruction is motivated by compressed sensing theory [46, 47, 48, 49] and is shown to be capable of removing aliasing artifacts (in the reconstructed images) resulting from severe EPI style k-space subsampling. In the first iteration of IPA, DM was performed on the highly subsampled measurements that were back projected. The back projection included combining multi-coil measurements, a 2D inverse Fast Fourier Transform (FFT) for each temporal slice and a linear temporal compression where the compression bases were pre-calculated using the dominant SVD components of the fingerprint dictionary. The temporal compression was performed primarily to reduce the reconstruction time. The 12 channel multi-coil data was combined coherently using sensitivity maps that were computed from the acquired data [50, 51, 52].

Briefly, each iteration of IPA consists of:

\[X^{i+1} = \rho_D (X^i - \mu A^H (A (X^i) - Y)) \]

where, \(Y \in \mathbb{C}^{m\times N} \) are the undersampled k-space measurements across \(N \) temporal repetitions and multiple coils, \(\mu \) is the step size which is adaptively selected through line search [36], \(X^i \in \mathbb{C}^{m\times N} \) are the spatio-temporal reconstructed images at iteration ‘i’ and \(D \in \mathbb{C}^{d\times N} \) denotes the pre-computed dictionary with ‘d’ atoms (\(d = 23866 \) atoms in this case). The forward and backward operators \(A, A^H \) model the multi-coil sensitivities and 2D Fourier Transforms for the acquired subsampled data. The forward and adjoint operators were implemented using the non-uniform fast Fourier Transform (NUFFT) for the spiral reconstruction. Since the spiral readout acquires much denser samples from the centre of k-space than the outer regions, density compensation was performed in both forward and adjoint operations for faster convergence. \(\rho_D \) denotes the DM step that is used in [36, 25] consisting of i) a search over the normalized dictionary atoms to replace the temporal pixels of \(X^{i+1} \) with the maximum correlated fingerprints and ii) proton density rescaling.

Therefore, the first iteration of IPA could be interpreted as an application of DM with proton density regularization [35, 36]. SVD compression-decompression was also applied iteratively in IPA reconstruction to reduce the complexity of the reconstruction [25, 44]. The first 20 dominant singular values were enough to robustly compress the dictionary. The IPA reconstruction was allowed to converge through multiple iterations to improve the data fidelity (i.e. to reduce the relative error between the quantitative estimates of predicted T1 and T2 values and the MRF measurements at each iteration) resulting in more accurate tissue parametric estimations. The convergence occurred when the decrease in relative error between the model fit and acquired measurements did not exceed the specified tolerance level (i.e. 10^-6) in successive iterations or if the maximum number of iterations (i.e. 100) had been reached (whichever occurred sooner).

2.5.1. Brainweb Digital Phantom Experiment

The Brainweb digital phantom is a realistic, high-resolution, digital, volumetric phantom of the human brain. This threedimensional digital brain phantom defines the spatial distribution for different brain tissues such as grey matter, white matter, cerebrospinal fluid and muscle, where voxel intensity is proportional to the fraction of tissue within the voxel [53, 54]. Since the contribution of each tissue type to each voxel in the brain phantom is known, it can be used as the gold standard to test analysis algorithms such as DM and iterative reconstruction algorithms. The Brainweb digital phantom with known T1 and T2 values, 16-shot EPI subsampling and \(N = 200 \) repetitions was used in this study to demonstrate the advantages of iterative reconstruction over non-iterative DM method.

3. Results

Figure 4a and 4b show a subsampled zero-filled (ZF) EPI image of a phantom and a healthy volunteer respectively at a single time-point (\(t = 1 \)) and the temporal signal curve of one representative voxel over the entire time-series of 500 repetitions together with its corresponding matched dictionary entry.
Although both the phantom and healthy volunteer images are dominated by subsampling artefacts, the DM algorithm is still able to find the corresponding dictionary entry that has the maximum correlation with the acquired data showing its robustness to undersampling artefacts. Note that undersampling artefacts are regular due to uniform subsampling but the signal along the temporal domain is still noise-like which is similar to the Spiral-MRF case as shown by Jiang et al. [18]. This noise-like behavior of the signal in the temporal domain facilitates effective discrimination between dictionary elements resulting in an accurate dictionary match. Figure 5 shows the highly aliased zero-filled (ZF) images and Iterative Projection Algorithm (IPA) reconstructed images of the tube phantom and healthy volunteer at specific time-points (i.e. t = 44, 60, 250, 380, 420). It can be seen from the IPA reconstructed images that at lower repetition indexes (i.e. t = 44, 60) the images are predominantly T1 weighted. At higher repetition indexes (i.e. t = 350, 420) the images are more T2-weighted which is in agreement with the parameter encoding (i.e. FA train) used during acquisition. The signal intensity gradually increases due to the linear increase in the flip angles.

Figure 6a shows the comparison of T1 and T2 maps of i) Spiral-MRF and ii) multi-shot EPI-MRF for the tube phantom which were generated after DM (i.e. single iteration of IPA). The parametric maps are visually comparable for the two methods. Figures 6b and 6c show the mean (± standard deviation) T1 and T2 values of each tube in the phantom comparing i) Spiral-MRF (ramp FA, TR = 16 ms and N = 500 repetitions) in orange; ii) EPI-MRF (ramp FA, TR = 16 ms and N = 500 repetitions) in grey; iii) reference values from the manufacturer supplied reference document in blue and iv) gold standard measurements in green (i.e. inversion recovery spin echo - IR-SE for T1 estimation and single echo spin echo - SE for T2 estimation). The mean T1 values are in close agreement for all the methods (less than 4% variation) while the mean T2 values of Spiral-MRF (in orange) and EPI-MRF (in grey) were similarly close (less than 3.5% variation) for all the 12 tubes in the phantom. Figure 7a shows the generated multi-parametric maps of three healthy volunteer brains after the application of DM for i) Spiral-MRF and ii) EPI-MRF. Detailed structures can be clearly seen in the parametric maps of the healthy volunteer brains in both methods. The mean and standard deviations of WM and GM regions for the cohort of three healthy volunteer brains shown in Figures 7b and 7c are in agreement with each other for both methods (i.e. less than 3% variation for T1 and less than 6% variation for T2). These values are also compared with T1 and T2 literature values of an individual healthy volunteer brain that was estimated using an established Spiral-MRF technique with pseudorandom FA, varying TR and N = 1000 repetitions [18] and the gold standard method for conventional T1 and T2 healthy volunteer brain measurements [39].

Figure 8a shows the original T1, T2 maps of the Brainweb digital phantom [53, 54] with corresponding known parameters (T1 s and T2 s) for GM (1.3, 0.105), WM (0.85, 0.08) and CSF (4.2, 0.2) along with the estimated T1 and T2 maps using Dictionary Matching and IPA reconstruction from single-coil Brainweb phantom data. Figure 8b shows the T1 and T2 difference error maps for Dictionary Matching and IPA reconstruction. Figure 9 shows the T1 estimations of EPI-MRF for a healthy volunteer brain when IPA was used for reconstruction. Also shown are the T1 maps generated after DM and difference map for comparison. The IPA reconstruction reduces the relative error between the quantitative estimates of predicted T1 and T2 values and the MRF measurements at every iteration and converges when this error becomes very small. Figure 10 shows the corresponding T1 map for Spiral-MRF after IPA reconstruction. In the spiral case, we observe checker board like artefacts (similar to observations reported by Cline et al. [25]) which arise due to lack of samples from the edges of k-space as a result of the spiral sampling strategy. This can be seen as an issue of the null space of the forward operator [25] and is not an algorithmic issue. Iterative reconstructions are particularly beneficial when we have limited data and its benefits are further highlighted in the supplementary material in a reduced coil scenario.

4. Discussion

In this study, a new MRF scheme based on a vastly subsampled Cartesian readout that utilizes multi-shot EPI (i.e. multi-shot EPI-MRF) has been introduced. Good quantification of T1 and T2 maps has been achieved both in phantom and three healthy volunteer brains in about 8 s per slice for the range of T1 and T2 values that normally occur in the human brain. The generated parametric maps of the proposed EPI-MRF method have been compared and are shown to be in good agreement with Spiral-MRF; thereby demonstrating the potential of Cartesian MRF as a suitable alternative to Spiral-MRF. Moreover, EPI sequences have been used clinically for over 20 years and the artefacts that arise from EPI are better understood by clinicians when compared to spirals. Therefore, it has a great potential to be easily adopted in clinical protocols.

On comparison of the T1 and T2 maps of the tube phantom for EPI-MRF and Spiral-MRF in Figure 6a, it can be seen that both T1 and T2 maps are visually comparable for both methods. The mean T1 and T2 values (see Figs. 6b and 6c) for each of the 12 tubes in the phantom are in close agreement with less than 4% deviation for T1 and less than 3.5% deviation for T2. The mean T1 values of Spiral-MRF and EPI-MRF were also similarly in very good agreement with the gold standard IR-SE T1 measurements and with the known reference T1 values from the manual (see Fig. 6b). This is due to the high T1 sensitivity of the encoding scheme used for the acquisition resulting in a good T1 quantification. However, despite the good T2 agreement between EPI-MRF and Spiral-MRF for the phantom, we observe that T2 values of the tube phantom overestimate the reference values (see Fig 6c). In contrast, the gold standard SE measurements appear to slightly underestimate the reference values (and quite considerably in the case of tube 2). The T2 overestimation in MRF may be caused by slice profile and B1 effects which have been previously reported in other MRF stud-
ies [55, 21, 56, 57]. In addition to this, previous MRF studies have reported that T2 variability is greater than T1 in certain gel based phantoms suggesting that T2 is affected more by B1 and temperature fluctuations [58, 19]. This T2 discrepancy highlights an inherent limitation of the standard MRF model and not just the proposed methods. This is an important and underreported issue in MRF even though attempts have been made to incorporate correction factors in standard MRF by simulating the radiofrequency pulse in the dictionary, estimating an additional B1 map during the MRF acquisition or by acquiring a B1 field map in a separate scan [55, 21]. The main focus of this study is to demonstrate that two different MRF methods (i.e. Spiral-MRF and EPI-MRF) that use the standard MRF model are in agreement with each other for both phantom and healthy volunteer scans. It does not completely account for the many correction factors necessary to improve the quantitative accuracy of the standard MRF model and is acknowledged as the major disadvantage of this work. Furthermore, it has also been shown in other studies that gold standard T2 measurements are also affected by B1 effects which cause a T2 bias when fitting to the mono-exponential T2 decay curve [59, 60]. Additional B1 measurements can also be used to reduce this bias and potentially decrease the discrepancy between MRF and gold standard T2 measurements.

The mean T1 and T2 values of white matter (WM) and grey matter (GM) for three healthy volunteer brains shown in Figures 7b and 7c for Spiral-MRF and EPI-MRF are almost identical (less than 3% deviation for T1 and less than 6% deviation for T2) and this demonstrates good T1 and T2 quantification for the three healthy volunteer brains. The mean T1 and T2 values of EPI-MRF and Spiral-MRF are also in close agreement with the values obtained by an established Spiral-MRF acquisition with pseudorandom FA schedule, varying TR and N = 1000 repetitions [18] and with gold standard T1 and T2 values of healthy volunteers previously reported in the literature [39] (see Figs. 7b and 7c). These results show that the proposed multi-shot Cartesian EPI-MRF approach can be used to generate similar T1 and T2 maps like Spiral-MRF in human brains and can be a good alternative to the Spiral-MRF implementation.

This study also shows the advantages of using iterative reconstruction over the non- iterative DM method. The Brainweb digital phantom [53, 54] with known T1 and T2 values, 16-shot EPI subsampling and N = 200 repetitions was used to demonstrate the need for iterative reconstruction (see Figure 8). From the T1 and T2 estimates of DM and IPA reconstructions in Figure 8a, we can see that a considerable improvement in accuracy was achieved when IPA reconstruction was used. The error maps in Figure 8b show the reduced error for IPA reconstruction when compared to the DM method. Figure 9b also shows that there is a reduction in the relative error for EPI-MRF and Spiral-MRF at each iteration until the convergence of the IPA algorithm. The relative error showed an approximate five-fold decrease for EPI-MRF and eight-fold decrease for Spiral-MRF (see Fig. 9 b). The IPA reconstructions of multi-shot EPI-MRF converged very quickly (in about 4 iterations) compared to the Spiral-MRF implementation (30 iterations) and could therefore result in a very fast implementation on the scanner. The monotonic decay of the relative error (i.e. measurement fidelity error) implies that iterative reconstructions improved data consistency as compared to the non-iterative DM scheme. Since the entire k-space is sampled in EPI (including high frequency information from the k-space corners), iterative reconstruction improved the T1 estimation and resulted in a very fast convergence especially with the availability of multi-coil data (see. Figure 9a). The DM method shows poor results in Figure 8 since the Brainweb digital phantom data contains only single coil data. The multi-coil healthy volunteer brain data used in Figure 9 considerably improves the performance of the DM method since most of the aliasing due to subsampling is removed by using the multiple coils (in a similar way to parallel imaging). While good reconstructions are possible with non-iterative schemes such as DM when multi-coil data is used, iterative methods are beneficial when there is less available data. Here we demonstrated this with a reduced number of coils but it should also be of value when optimizing shorter sequences. In contrast, for the spiral case, due to the lack of sufficient high frequency content, errors appeared in the iterative reconstruction in the form of checkerboard like artefacts (similar to the ones reported by Cline et al. [25]) although there was a monotonic decay in the relative error (see Fig. 10). These errors could be removed either by using a spatial-smoothing regularization [61] or by reconstructing images at a lower spatial resolution. These high frequency artefacts coupled with the errors due to re-gridding highlight a fundamental limitation of the spiral sampling strategy [25] which is independent of the algorithm used for reconstruction. Therefore, IPA EPI-MRF may offer a possible route to higher resolution MRF due to its complete k-space coverage. [62, 25].

The reconstruction times were heavily dependent on the SVD compression-decompression that was used when moving from k-space to image space (i.e. backward or adjoint operation) and vice versa (i.e. forward operation) [44, 25]. Each iteration used SVD compression in the backward operation and SVD decompression in the forward operation. This provided a considerable reduction in reconstruction time. The reconstruction time was increased from 22 seconds to 206 seconds for EPI-MRF and from 482 seconds to approximately 6 hours for Spiral-MRF when SVD compression-decompression was not used in the reconstruction. The reconstructions were performed on a normal laptop computer with standard specifications (i.e. Intel Core i7 Processor with 16GB RAM). The convergence of the Spiral-MRF implementation was usually slower (i.e. both in time and in the number of iterations required) when compared to EPI-MRF (see Fig. 9b). This appears to be due to the bad conditioning of spiral sampling problem and the need for re-gridding to reconstruct spiral data [25]. In addition, each iteration was more expensive because spiral sampling uses a costlier NUFFT compared to the FFT used in EPI. Therefore, SVD compression-decompression is highly beneficial especially for Spiral-MRF in order to speed up the reconstruction time. Further reductions in the computation time are possible using an adaptive iterative
algorithm with fast nearest neighbor searches for the DM step in the reconstruction [62]. The fast convergence of EPI-MRF and its robustness to high frequency artefacts make it naturally suitable for iterative reconstructions.

Despite the enormous potential and numerous advantages of MRF, T1 and T2 quantification through the MRF framework also has some underlying drawbacks that also extend to the proposed EPI-MRF approach. The quantification is not accurate in MRF when T1 and T2 values are very high (i.e. T1 > 2500 ms and T2 > 400 ms) due to the difficulty of discriminating dictionary entries at these values and this can be seen from the underestimation of T2 cerebrospinal fluid (CSF) values in both EPI-MRF and Spiral-MRF in Figure 7a. In addition, the TR that was used for both EPI and spiral acquisitions was the same. It was set to the minimum achievable TR for EPI (i.e. 16 ms) for fair comparison even though the TR could be further reduced for the case of Spiral-MRF. We have observed in other experiments that there were variations in T2 estimates when different TRs were used (i.e. longer TRs resulting in higher estimates) suggesting that the idealized EPG model used for the dictionary may have some inconsistencies and it merits further research (data not shown). It is also important to note that EPI sequences are more sensitive to B0 inhomogeneity caused by magnetic susceptibility variations that occur in the form of signal loss/leakage in the phase encoding (PE) direction [63, 64, 34] than spirals. The higher sensitivity of EPI to B0 inhomogeneity is due to its reduced bandwidth in the PE direction. In the human brain, we observe a small signal shift/leakage around the CSF region (i.e. to the left and right of the ventricles in the brain) which is a susceptibility artefact and can be seen from the EPI-MRF T2 maps in Figure 7a. This is because the CSF has a low susceptibility compared to the iron rich regions surrounding it. However, these local magnetic susceptibility differences are small and do not appear to significantly affect the T2 estimations of GM and WM in human brains as shown by the comparisons in Figure 7c. Geometric distortions which are common in EPI are also present in the T2 maps in Figure 7a and might be caused by imperfect phase correction leading to phase errors. It could be reduced by using Echo Time Shifting (ETS) that could be used to improve the phase error function in multi-shot EPI [65]. Due to the high T1 sensitivity of the acquisition, these artefacts were suppressed in the T1 maps but they affected the T2 maps. By enhancing the T2 sensitivity in the acquisition using an optimized FA train, these artefacts could be potentially reduced.

A study of optimized FA schedules is of great interest for our future work which would include finding several optimal parameters that could depend on many factors such as the sequence used (i.e. hSSFP or unbalanced SSFP), excitation sequence length, TRs, the type of variation in flip angles (i.e. smoothly varying, pseudo-random, random, piecewise constant etc.), the amount of subsampling and the type of sampling (i.e. Cartesian, Spiral or Radial). In addition, this future work would include methods to accurately correct for magnetic susceptibility variations, phase errors and also explore high resolution MRF using IPA EPI-MRF. FA schedule optimization, reduction of phase errors and incorporation of correction factors to compensate for T2 quantification errors could potentially improve the robustness of the proposed EPI-MRF method.

5. Conclusion

The multi-shot EPI-MRF method introduced here can provide joint quantification of multi-parametric maps such as T1 and T2 with good accuracy in a short scan duration (i.e. 8 s per slice) that is similar to Spiral-MRF. This multi-shot approach not only allows considerable k-space subsampling like spirals but also can achieve a short TR that is comparable to Spiral-MRF. As a result, it can be a suitable alternative for performing MRF using an accelerated Cartesian readout; thereby increasing the potential usability of MRF.

Acknowledgements

The research leading to these results has received funding from the European Union’s H2020 Framework Programme (H2020-MSCA-ITN-2014) under grant agreement no 642685 MacSeNet, the Engineering and Physical Sciences Research Council (EPSRC) platform grant, number EP/J015180/1 and the Scottish Research Partnership in Engineering (SRPe) award, number SRPe PECRE1718/17.

References

[58] Y. Jiang, D. Ma, K. E. Keenan, K. F. Stupic, V. Gulani, M. A. Griswold, Repeatability of magnetic resonance fingerprinting t1 and t2 estimates assessed using the ismmr/nist mri system phantom, Magnetic resonance in medicine 78 (4) (2017) 1452–1457.

Figure 1: T1-T2 sensitivity of exemplary values of grey matter (GM; T1 = 1300 ms, T2 = 105 ms), white matter (WM; T1 = 850 ms, T2 = 80 ms) and cerebrospinal fluid (CSF; T1 = 4200 ms, T2 = 200 ms) at 3T that were simulated for the unbalanced SSFP sequence using the EPG model for a) Linear Ramp FA Pattern from 1° to 70° with N = 500 repetitions and b) Pseudorandom FA pattern with N = 1000 repetitions that was used by Jiang et al. [18]. The sensitivity measures the similarity between different T1-T2 responses and hence specifies the accuracy with which a query T1-T2 pair can be matched to the correct dictionary entry in the presence of noise. The tighter the contours, the smaller the range of T1 and T2 valued dictionary atoms to which the query is likely to be matched. Note that both sensitivity plots have the same contour levels for direct comparison between the two FA schedules.
Figure 2: (a) The 16 shot EPI trajectory showing G_x, G_y and G_z gradients. Note that the G_y gradients are slightly different for each of the 16 shots indicating that different lines of k_y space are acquired at every shot. The spoiler gradient G_z dephases the transverse magnetization for every TR making the sequence unbalanced [18]. (b) The corresponding x and y zero order gradient moments for G_x and G_y were nulled to ensure constant residual magnetization for each shot throughout the acquisition.
Figure 3: (a) Figure showing the T1 sensitivity and (b) T2 sensitivity of the sequence for discriminating dictionary atoms when a variable flip angle ramp that linearly varied between 1° to 70° was used during the acquisition for 500 repetitions/frames. The FA for the 1st frame was 1° while the FA for the 500th frame was 70°. Note that the Inversion pulse causes the initial T1 discrimination in (a). These sensitivities were observed at practical T1 and T2 values. Only a subset of the high resolution dictionary is plotted for better visualization. It is also equivalent to label the x-axis in timepoints (i.e. seconds). The total acquisition time for a single slice was 8 seconds.
Figure 4: Figure 4a and 4b show a subsampled zero-filled (ZF) EPI image of phantom and healthy volunteer respectively at a single time-point (t = 1) and the temporal signal curve of one representative voxel over the entire time-series of 500 repetitions together with its corresponding matched dictionary entry. Note that dictionary matching (DM) still works even in the presence of uniform subsampling artefacts in the image due to the noise-like behavior of the signal in the temporal domain.
Figure 5: Figure showing the highly aliased zero-filled (ZF) images and Iterative Projection Algorithm (IPA) reconstructed images at specific time-points (i.e. $t = 44, 60, 250, 380, 420$) of the tube phantom and the healthy volunteer for a) EPI-MRF (ramped FA, TR = 16 ms, $N = 500$ repetitions) and b) Spiral-MRF (ramped FA, TR = 16 ms, $N = 500$ repetitions). For DM, the subsampled/aliased ZF images at each frame are used for parameter estimation which is consistent with other work in MRF. However, this image sequence should not be considered as an estimate of the actual alias free time series of images. Instead, the DM estimates average out the aliasing artefacts. In contrast, for IPA, the subsampled images in each frame are simultaneously reconstructed to produce an alias free time series of images along with parameter estimation.
Figure 6: (a) T1 and T2 maps (in seconds) of the tube phantom generated after Dictionary Matching (DM) for i) Spiral-MRF (ramped FA, TR = 16 ms, N = 500 repetitions) and ii) EPI-MRF (ramped FA, TR = 16 ms, N = 500 repetitions). (b) Mean T1 (± standard deviation) of all tubes in phantom comparing i) Spiral-MRF (ramp FA, TR = 16 ms and N = 500 repetitions) in orange; ii) EPI-MRF (ramp FA, TR = 16 ms and N = 500 repetitions) in grey; iii) reference values from the manufacturer supplied reference document in blue and iv) gold standard measurements in green. (c) Corresponding mean T2 values (± standard deviation). The tubes are numbered in (a) to point out the corresponding tubes in (b) and (c). Note that inversion recovery spin echo (IR-SE) and single echo spin echo (SE) were the gold standard experiments respectively for T1 and T2 estimation. The reference manual supplied by the manufacturer (i.e. Diagnostic Sonar, Livingston, UK) contained reference T1 and T2 values of all the tubes in the phantom.
Figure 7: (a) T1 and T2 maps (in seconds) of three healthy volunteers generated after Dictionary Matching (DM) for i) Spiral-MRF (ramped FA, TR = 16 ms, N = 500 repetitions) and ii) EPI-MRF (ramped FA, TR = 16 ms, N = 500 repetitions). Note the signal loss and signal accrual effects (i.e. susceptibility artefacts) to the left and right of the brain ventricles in the EPI-MRF T2 maps. (b) Mean T1 (± standard deviation) of WM and GM regions of a cohort of three healthy volunteers comparing i) Spiral-MRF (ramp FA, TR = 16 ms and N = 500 repetitions) in orange and EPI-MRF (ramp FA, TR = 16 ms and N = 500 repetitions) in grey. These values are also compared with T1 and T2 literature values of an individual healthy volunteer brain that was estimated using an iii) established Spiral-MRF technique (pseudorandom FA, varying TR and N = 1000 repetitions) in blue [18] and iv) previously reported conventional literature values of a healthy volunteer cohort in green [39]. (c) Corresponding mean T2 values (± standard deviation) for WM and GM regions from three healthy volunteers.
Figure 8: a) The original T1,T2 maps of the digital Brainweb Phantom with corresponding known parameters (T1 s and T2 s) for GM (1.3, .105), WM (0.85,0.08) and CSF (4.2 and 0.2) along with the estimated T1 and T2 maps using Dictionary Matching and IPA reconstruction from single-coil Brainweb digital phantom data. b) The T1 and T2 difference error maps for Dictionary Matching and IPA reconstruction. The maximum T1 and T2 error using DM was 38.09 % and 35 % respectively whereas the maximum T1 and T2 error using IPA was 3.9 % and 5 % respectively. The DM method shows poor results since single-coil Brainweb digital phantom data was used to reconstruct the quantitative maps. Aliasing effects are still present inside the brain for DM reconstruction while aliasing is completely resolved when IPA reconstruction is used.
Figure 9: (a) T1 maps generated using Dictionary Matching (DM) and Iterative Projection Algorithm (IPA) from multi-coil healthy volunteer data along with the difference map for EPI-MRF. (b) A comparison of IPA convergence is shown for EPI-MRF and Spiral-MRF. The multi-coil healthy volunteer brain data considerably improves the performance of the DM method since most of the aliasing inside the brain due to subsampling is removed by using the multiple coils (in a similar way to parallel imaging).

Figure 10: T1 maps of a healthy volunteer generated using Dictionary Matching (DM) and Iterative Projection Algorithm (IPA) respectively for Spiral-MRF. The enlarged image shows the appearance of high frequency artefacts after iterative reconstruction.
a) TR = 8 ms; Linear Ramp Flip Angle Pattern; N = 500 repetitions

a) TR = 16 ms; Linear Ramp Flip Angle Pattern; N = 500 repetitions
Figure 11: Supplementary Figure 1: Figure showing the T1-T2 sensitivity of the ‘unbalanced SSFP’ sequence with Linear Ramp Flip Angle Variation and N = 500 repetitions for a) TR = 8 ms; b) TR = 16 ms; c) TR = 40 ms and d) TR = 70 ms. Note that shorter TR’s have better sensitivity.
Figure 12: Supplementary Figure 2: (a) Figure showing the T1 maps of a healthy volunteer generated using 12 coils and 4 coils respectively for Dictionary Matching (DM) and Iterative Projection Algorithm (IPA) for EPI-MRF. The IPA algorithm is able to reconstruct T1 maps similar to the 12 coils case even though only 4 coils are used (this highlights the benefit of IPA in a reduced coil scenario). However, DM does not perform as well in a 4 coil scenario and produces noisy T1 maps as shown in the Figure. (b) The convergence of IPA algorithm using different number of coils are shown for EPI-MRF. Note that DM is equivalent to a single iteration of IPA.