Identifying energy constraints to parasite resistance

Citation for published version:

Digital Object Identifier (DOI):
10.1111/j.1420-9101.2010.02152.x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
Journal of Evolutionary Biology

Publisher Rights Statement:
OnlineOpen article.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Oct. 2018
Identifying energy constraints to parasite resistance

D. E. ALLEN & T. J. LITTLE
Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK

Abstract
Life-history theory suggests that energetically expensive traits may trade off against each other, resulting in costs associated with the development or maintenance of a particular phenotype. The deployment of resistance mechanisms during parasite exposure is one such trait, and thus their potential benefit in fighting off parasites may be offset by costs to other fitness-related traits. In this study, we used trade-off theory as a basis to test whether stimulating an increased development rate in juvenile *Daphnia* would reveal energetic constraints to its ability to resist infection upon subsequent exposure to the castrating parasite, *Pasteuria ramosa*. We show that the presumably energetically expensive process of increased development rate does result in more infected hosts, suggesting that parasite resistance requires the allocation of resources from a limited source, and thus has the potential to be costly.

Introduction
A significant question in the study of host–parasite coevolution is why, in the face of strong directional selection pressure for hosts that are resistant to parasites, are there still susceptible genotypes (Anderson & May, 1982). One plausible explanation is that parasite resistance is costly, in that the maintenance or deployment of the resistance machinery requires the reallocation of limited internal resources away from other fitness-related traits (Stearns, 1992). Activating this machinery will therefore only be beneficial if investment in resistance is more important to fitness than other traits that trade-off against resistance.

Life-history theory suggests that achieving optimal fitness in a particular environment does not necessarily mean all fitness traits are expressed at their optimum (Reznick, 1985; Roff, 1992). This is based on the idea that an organism has a limited resource (energy) pool that must be divided among traits, and increased allocation to one trait necessitates a decreased allocation elsewhere. A standard experimental approach to test for these trade-offs is to look for negative correlations between two or more traits under various experimental conditions, as evidence that increased investment in one trait has deleterious consequences for another. This method has been successful in revealing life-history trade-offs between traits such as current and future reproduction (Landwer, 1994; Doughty & Shine, 1998), fecundity and longevity (Rose, 1984; Sgro & Partridge, 1999), and development time and body size (Nunney, 1996).

Similarly, if there is a cost to developing and deploying resistance mechanisms, trade-offs between immune responses and fitness traits are expected and should be measurable in an analogous manner (Sheldon & Verhulst, 1996; Zuk & Stoehr, 2002). An approach to the measurement of such trade-offs is to expose hosts to an immune stimulus or parasite challenge and correlate subsequent changes in fitness measures, such as reproduction, with the development of infection (Kraaijeveld & Godfray, 1997; Fellowes et al., 1998; Moret & Schmid-Hempel, 2000; Norris & Evans, 2000). However, systems where the parasite or immune challenge directly affects the fitness traits of interest can confound this approach.
(Little & Killick, 2007), i.e. it may be difficult to separate the energetic cost of launching an immune response from the cost imposed by direct damage from parasite growth.

In this study, we used the *Daphnia magna* – *Pasteuria ramosa* host–parasite pair, the latter of which castrates its host upon infection. As such, this system is not easily amenable to an approach that correlates changes in fecundity with infection, because infected hosts cease to reproduce. Therefore, rather than trying to identify costs using correlations, we used the concept of energy trade-offs to ask whether experimental manipulation of energy expenditure prior to parasite exposure affects subsequent parasite resistance. The identification of this type of energy constraint would suggest that parasite resistance has the potential to be costly.

Our approach was to stimulate increased energy expenditure in juvenile *Daphnia* and test whether that had an effect on their ability to resist parasite infection. Exposure to fish kairomones (a well-established chemical cue for the threat of fish predation) stimulates an increased rate of development in juvenile *Daphnia* sp. (Stibor, 1992; Stibor & Luning, 1994; Machacek, 1995), a presumably energy-conservative process. By first exposing juvenile *Daphnia* to fish kairomones, and then subsequently to parasite spores, we were able to test whether mounting a resistance response utilizes the same energy source as development, and whether drawing on that resource prior to parasite exposure results in a decreased ability to defend against infection.

Methods

Study system

Daphnia magna (Crustacea: Cladocera) are cyclically parthenogenetic planktonic crustaceans that inhabit freshwater lakes and ponds (Peters & de Bernardi, 1987). *Pasteuria ramosa* are spore-forming bacteria that cause sterilization and premature death in *D. magna* (Ebert et al., 1996). Transmission of *P. ramosa* is exclusively horizontal, achieved by spores that are released from dead hosts and picked up by *Daphnia* during filtration feeding (Ebert et al., 1996). Within the host, *P. ramosa* spores germinate and develop, culminating in the formation of transmission stage spores (Ebert et al., 1996).

Host individuals were hatched from ephippia (desiccation-resistant capsules containing two eggs produced through sexual reproduction) isolated from sediment collected from a small pond population on Kames East Mains Farm near Leitholm in the Scottish Borders, UK. Four individually hatched clones (genotypes) from four different ephippia were used. The *Pasteuria* spores were also obtained from the same sediment samples as the hosts. For this, random juvenile *Daphnia* were placed in shallow trays containing sediment, artificial *Daphnia* culture medium (Klüttgen et al., 1994) and a small amount of algae. They were left in the trays for 7 days at room temperature and then removed to beakers with fresh media and plentiful algae. All individuals showing infection were grown for a further 40 days to maximize growth of transmission spores, then crushed in water and mixed to form a general *P. ramosa* spore solution.

Under favourable laboratory conditions, *D. magna* readily reproduces asexually, enabling genetic lines to be replicated for experimental purposes. Twenty-four juvenile females from each of the four genotypes were placed individually in 100 mL of artificial culture medium, and taken through two generations under experiment conditions (20°C, 12 h light, fed 7 × 10⁶ cells of Chlorella per day) to remove potential covariances because of maternal and grand-maternal effects. Individuals from the second clutch of each of these third generation maternal-lines became the experimental animals (the first clutch was discarded). Beakers were checked daily, and new-born individuals from the second clutch were collected and one individual was randomly assigned to each of the treatment groups (described elsewhere). All clutches were not born on the same day, so this allocation process, and hence all other stages of the experiment, was staggered over 4 days.

Design and treatment groups

The four main treatment groups were Control, Fish, Parasite and Fish + Parasite. The Control and Parasite treatments were kept in artificial culture media throughout the entire experiment, whereas the Fish and Fish + Parasite treatments were kept in ‘fish-kairomone media’ for a set time period before being removed to artificial culture medium (Table 1).

The fish kairomone media used in the Fish and Fish + Parasite treatments was prepared from artificial *Daphnia* culture media (Klüttgen et al., 1994) in which Sticklebacks were kept at a density of one fish per 4 L. Half the media was removed and replaced daily. This collected media was filtered through a 5-μm filter before use. Fish kairomones are known to stimulate faster development to maturity, and often larger clutch sizes, in *Daphnia* (Stibor, 1992; Stibor & Luning, 1994; Machacek, 1995). *Daphnia* mature at around 6 days of age, but there is some variation in this timing. In order to ensure that any differences in response to parasite exposure between the regular media water and fish kairomone treatments were not simply an effect of systematic differences in ages or developmental stages of the exposed individuals, each of the four main treatment groups were split into two sub-groups: D6, a day 6 ‘absolue age’ exposure group, and DOM, a day-of-maturity ‘developmental stage’ exposure group. The Control and Fish treatments consisted of 24 replicates per genotype (12 × D6, 12 × DOM), whereas the Parasite and Fish + Parasite
treatments consisted of 48 replicates per genotype (24 × D6, 24 × DOM) (Table 1).

On the day of the second clutch, six individuals from each maternal-line clutch were placed singly in 200-mL beakers and assigned to one of eight treatments. Note that only six individuals per clutch were used, because the Control and Fish treatments had half as many replicates as the Parasite and Fish + Parasite treatments (Table 1). The Control and Parasite treatments were kept in 100 mL artificial culture medium, and the Fish and Fish + Parasite treatments kept in 100 mL of fish water, until they were either 6 days old or until they were seen to be carrying eggs in their brood chamber (maturity), depending on their treatment-group assignment. All beakers were checked and fed daily and given fresh media or fish water every second day.

On their respective treatment day (Day 6 or DOM), individuals were moved singly to beakers with 50 mL artificial culture media, fed a small amount of algae (3 × 10^6 cells Chlorella) and given either 20 000 P. ramosa spores (Parasite and Fish + Parasite), or the equivalent volume of crushed healthy Daphnia (Control and Fish). After 2 days under parasite ‘exposure’ conditions, all individuals were placed singly in beakers with 100 mL of artificial culture media and fed with 7 × 10^8 cells Chlorella. Animals were then kept for a further 20 days, fed with 7 × 10^8 cells Chlorella daily and given fresh culture media every second day.

Data collection
For all individual Daphnia, we recorded their age at maturity, number of offspring in first and second clutches, size at maturity and infection status. The number of offspring counted from the first two clutches was combined to form a single ‘fecundity’ variable for analysis. Offspring were discarded after counting. Body size was measured in millimetres using a Leica dissecting microscope (Leica Microsystems, Wetzler, Germany).

Analysis
We initially tested the three life-history traits, age at maturity, size at maturity and fecundity, for differences between the D6 and DOM groups within each of the four treatments. We included all eight groups (D6 and DOM for each of the four treatments) in an ANOVA [Proc GLM, (SAS, 2000)] and used subsequent independent contrasts to test within each of the treatments. For example, a contrast between the Fish-D6 and Fish-DOM tests for variation in responses between exposure to fish kairomones until day 6 and exposure until DOM. We found no differences between the D6 and DOM groups for any of the response variables and so combined the two sub-groups within each of the four main treatments for all subsequent analyses.

Treatment effects on the three life-history traits were analysed using ANOVA [Proc GLM, (SAS, 2000)] with the model ‘trait ~ treatment + genotype + treatment × genotype’. When the main effect of ‘Treatment’ was significant, we used contrasts [Contrast, (SAS, 2000)] to test specifically for fish effects: (Control and Parasite) vs. (Fish and Fish + Parasite) tests the overall effect of exposure to fish kairomones relative to no fish. When the main effect of ‘Treatment’ was significant but not explained by the first contrast tested, we used additional post-hoc contrasts: Control vs. Fish and Parasite vs. Fish + Parasite, which test for the effect of fish exposure but allow for differences between the parasite and no-parasite treatments, and Control vs. Parasite and Fish vs. Fish + Parasite, which test for a parasite effect but allow for differences between the fish and no-fish treatments. Bonferroni adjustments for multiple testing were applied to the post-hoc contrasts prior to assigning significance, and only significant contrasts are reported in Table 2.

The effect of the exposure to fish kairomones on subsequent parasite resistance was analysed using a logistic regression [Proc Genmod, (SAS, 2000)] with a
binomial distribution and logit link function. The model structure is the same as with the life-history traits using infection status as the dependent variable, but using only data from the two parasite-exposed treatment groups.

Results

Both age at maturity and fecundity differed significantly among treatment groups, whereas treatment had no significant main effect on body size at maturity (Table 2, Fig. 1). The contrasts between fish and no-fish treatments show that exposure to fish kairomones accounts for the difference between treatments in age at maturity, with fish-exposed hosts maturing earlier (Table 2, Fig. 1a). However, the significant effect of treatments on fecundity appears to be driven by both fish and parasite effects, with the control differing significantly from both the fish-only (approaching significance after correction for multiple testing) and parasite-only treatments (Table 2, Fig. 1c).

There was a significant effect of host genotype on all three measured life-history traits (Table 2). However, for body size and fecundity, there was also a significant interaction between genotype and treatment. For fecundity at least, this interaction appears to largely be driven by host genotype 2 differing from the other three genotypes in its response to fish exposure (Fig. 1c).

Exposure to fish kairomones resulted in a significant increase in the proportion of hosts infected (Table 2, Fig. 2). There were significant differences between genotypes in the proportion infected (Table 1), but no interaction effect between genotype and treatment, showing that the decreased resistance subsequent to fish exposure was consistent across all four host genotypes (Fig. 2).

Discussion

In this study, we measured three life-history traits in order to test whether our host genotypes responded to fish kairomones as predicted by previous studies. We tested the assumption that exposure to fish kairomones stimulates an increased rate of development, a presumably energetically consumptive process, and found that

Table 2 Analysis of the effects of exposure to fish kairomones and parasites on age at maturity, body size at maturity and fecundity (*ANOVA*), and resistance to parasites (Logistic regression). Contrast analyses are listed in italics after the *ANOVA* results.

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>F</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at maturity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>3</td>
<td>6.84</td>
<td>0.0002</td>
</tr>
<tr>
<td>Genotype</td>
<td>3</td>
<td>55.59</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Treatment × genotype</td>
<td>9</td>
<td>1.16</td>
<td>0.32</td>
</tr>
<tr>
<td>Contrast: C&P vs. F&FP</td>
<td>1</td>
<td>11.86</td>
<td>0.0006</td>
</tr>
<tr>
<td>Size at maturity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>3</td>
<td>0.36</td>
<td>0.78</td>
</tr>
<tr>
<td>Genotype</td>
<td>3</td>
<td>25.18</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Treatment × genotype</td>
<td>9</td>
<td>2.19</td>
<td>0.022</td>
</tr>
<tr>
<td>Fecundity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>3</td>
<td>4.27</td>
<td>0.005</td>
</tr>
<tr>
<td>Genotype</td>
<td>3</td>
<td>56.14</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Treatment × genotype</td>
<td>9</td>
<td>8.27</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Contrast: C vs. F</td>
<td>1</td>
<td>4.86</td>
<td>0.028</td>
</tr>
<tr>
<td>Contrast: C vs. P</td>
<td>1</td>
<td>12.14</td>
<td>0.0005</td>
</tr>
<tr>
<td>Proportion of hosts infected</td>
<td></td>
<td>χ²</td>
<td>P value</td>
</tr>
<tr>
<td>Treatment</td>
<td>1</td>
<td>22.36</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Genotype</td>
<td>3</td>
<td>33.84</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Treatment × genotype</td>
<td>3</td>
<td>3.22</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Fig. 1 Mean life-history traits (a) age at maturity, (b) size at maturity and (c) fecundity, for each treatment group and genotype. The x-axis for each panel has the standard media treatments on the left (Control and Parasite) and fish media treatments (Fish and Fish + Parasite) on the right. Vertical bars represent two standard errors.
Daphnia in the fish-exposed treatments did develop to maturity significantly faster than the unexposed treatments. While there was some variation in the magnitude of this effect among genotypes, there was no interaction between treatment and genotype indicating that the direction of rate change was consistent. This suggests that the general response of these Daphnia to fish kairomones is an increased investment in development rate, making this a suitable stimulus for this experiment.

Previous studies have suggested that exposure to fish kairomones may also result in a decreased body size at maturity (Weider & Pijanowska, 1993; Stibor & Luning, 1994). Although we found no overall treatment effect on body size (Table 2), there was a genotype by treatment interaction, and our largest bodied clone (genotype 2) did respond to fish kairomones with a reduction in body size and smaller clutch sizes (Fig. 1b, c). However, the remaining three genotypes tended towards larger size and increased fecundity with fish exposure, suggesting that the effect on clone 2 is probably a genotype-specific effect and not an indication that the fish treatments were directly harmful or resulted in a reduced nutrient intake. It is possible that there are trait responses to predator cues that directly affect susceptibility independent of energy expenditure. Daphnia magna have been shown to respond to fish cues by altering traits as varied as eye diameter, percentage of male offspring, and phototactic behaviour (Boersma et al., 1998). For many such traits (e.g. eye size), it is not immediately obvious how this could directly increase susceptibility, though the possibility cannot be rejected. Additionally, unlike some other Daphnia species, D. magna do not produce any obvious defence structures such as neck teeth (Luning, 1992) or ‘crown of thorns’ (Petrusek et al., 2009) that could conceivably impact susceptibility by, for example, enlarging the host surface area. Thus, although our energy limitation hypothesis is not the only possible explanation, it is certainly among the most parsimonious.

Previous studies have found costs of mounting an immune response only under low food conditions (Moret & Schmid-Hempel, 2000; McKean & Nunney, 2005) and argue that trade-off costs may not be seen if there are sufficient resources available for compensatory resource intake (Moret & Schmid-Hempel, 2000). The present experiment was not performed under low food conditions. This suggests that the reduced resistance we see may actually be the consequence of underdeveloped resistance machinery, because of resource reallocation during development, rather than there being insufficient resources directly available to mount a resistance response. In support of this argument is the observation that the two genotypes with the largest increase in infection rates (~30% increase in these two genotypes compared to ~15% increase in the other genotypes) were also the two genotypes with the most dramatic decrease in development time in response to the fish kairomones (Figs 1a and 2).

Acknowledgments

We thank Philip Wilson for laboratory assistance. DEA and TJL are supported by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Sciences to TJL.
References

Received 29 July 2010; revised 10 September 2010; accepted 15 September 2010.

JOURNAL OF EVOLUTIONARY BIOLOGY © 2010 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY