A prediction of the amino acids and structures involved in DNA recognition by type I DNA restriction and modification enzymes

Citation for published version:

Digital Object Identifier (DOI):
10.1093/nar/25.17.3408

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Nucleic Acids Research

Publisher Rights Statement:
Copyright 1997 Oxford University Press; all rights reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A prediction of the amino acids and structures involved in DNA recognition by type I DNA restriction and modification enzymes

Shane S. Sturrock and David T. F. Dryden*

Institute of Cell and Molecular Biology, The King’s Buildings, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK

Received June 3, 1997; Revised and Accepted July 22, 1997

ABSTRACT

The S subunits of type I DNA restriction/modification enzymes are responsible for recognising the DNA target sequence for the enzyme. They contain two domains of approximately 150 amino acids, each of which is responsible for recognising one half of the bipartite asymmetric target. In the absence of any known tertiary structure for type I enzymes or recognisable DNA recognition motifs in the highly variable amino acid sequences of the S subunits, it has previously not been possible to predict which amino acids are responsible for sequence recognition. Using a combination of sequence alignment and secondary structure prediction methods to analyse the sequences of S subunits, we predict that all of the 51 known target recognition domains (TRDs) have the same tertiary structure. Furthermore, this structure is similar to the structure of the TRD of the C5-cytosine methyltransferase, HhaI, which recognises its DNA target via interactions with two short polypeptide loops and a β strand. Our results predict the location of these sequence recognition structures within the TRDs of all type I S subunits.

INTRODUCTION

A major aim of many studies of sequence specific protein–DNA interactions has been to determine how certain sequences of amino acids can recognise, with great fidelity, a DNA target sequence. Structural analysis of protein–DNA complexes has shown how α helices, β strands and loops can be used to give sequence specificity (1–3).

DNA methyltransferases (mtases) of restriction/modification (R/M) systems use target recognition domains (TRD) of 50–150 amino acids to recognise their DNA target sequence (4). The TRD is the major determinant in DNA target specificity with separate catalytic domains being required for enzymatic activity. The crystal structures of two monomeric type II C5-cytosine mtases, HhaI and HaeIII, bound to their DNA targets show that the TRD uses a conserved structure comprising two loops and one β strand to accomplish sequence recognition (5,6). The amino acid sequences of TRDs of many different C5-cytosine DNA

mtases have been compared. The level of sequence identity in these comparisons is very low and confined to several very short amino acid sequences corresponding to the recognition region in the two crystal structures (7,8), however, experimental support has been obtained for the involvement of this region in DNA recognition by C5-cytosine mtases other than HhaI and HaeIII (8). The N6-adenine and C4-cytosine mtases also contain a TRD and a catalytic domain (9), however, no cocrystal structure of one of these enzymes with DNA has been solved. A model of DNA recognition by the TaqI N6-adenine mtase, whose structure is known in the absence of DNA, has been constructed (10,11).

All characterised type I R/M systems recognise N6-adenine methylation of a bipartite target sequence (12–14). They are large, oligomeric, multifunctional enzymes encoded by the hsdR, M and S genes, combining both restriction endonuclease (R) and modification mtase (M) subunits with a DNA specificity (S) subunit. Type I R/M systems of enteric bacteria have been grouped into four families based on subunit complementation, DNA hybridisation and antibody cross-reactivity experiments (14,15). The amino acid sequence identity is very high within a family for the R, M and parts of the S subunit outwith the TRDs (16–21). This is believed to reflect conservation of residues in the subunit interfaces, and the nuclease and mtase catalytic sites.

The S subunits of type I R/M systems contain two TRDs of 150–180 amino acids (12–14). Each TRD is responsible for recognising one of the two parts of the bipartite DNA target. The amount of amino acid sequence conservation between TRDs is either below ~25% for TRDs recognising different targets, or 40–90% when a target is shared dependent on whether the S subunits are in a different or the same family. The remainder of the ~50 kDa S subunit contains amino acid sequences which show a high degree of conservation between type I systems. These regions are responsible for defining the length of the non-specific DNA spacer in between the two TRD target sequences (22) and for binding the M and R subunits (23–26). It is believed that each TRD fits into the major groove to recognised the DNA, and the M subunits are arranged on either side of the S subunit allowing them to encircle the DNA and gain access to the methylation targets (27,28). Methylation is predicted to occur via a base flipping mechanism in which the adenine base is displaced out of the DNA helix into the catalytic pocket of the M subunits. This implies that the M subunit is on the other side of the DNA helix from the S subunit.

*To whom correspondence should be addressed. Tel: +44 131 650 7053; Fax: +44 131 650 8650; Email: david.dryden@ed.ac.uk
Table 1. S subunits of type I restriction/modification systems

Family	Name	DNA target if known	1st TRD	2nd TRD	Reference
IA	EcoKI	AAC N6 GTGC	464	11–157	214–368
IA	EcoBI	TGA N8 TGCT	474	11–158	215–379
IA	EcoDI	TTA N7 GTCY	444	11–128	185–348
IA	StyLTIII	GAG N6 RTAYG	469	11–153	209–375
IA	StySPI	AAC N6 GTRC	463	11–157	214–367
IA	EcoR5I	>140	1–140	35,36	
IA	EcoR10I	>131	1–131	35,36	
IA	EcoR13I	>152	1–152	35,36	
IB	EcoAI	GAG N7 GTCA	589	110–247	403–540
IB	EcoEI	GAG N7 ATGC	594	109–247	403–545
IB	CfrAI	GCA N8 GTGG	578	108–236	385–529
IB	StySKI	CGAT N7 GTTA	587	108–249	396–538
IB	StySTI	>146	1–146	36	
IB	EcoR17I	ATR...	>138	1–138	35,36
IC	EcoR124I	GAA N6 RTCG	409	25–142	215–350
IC	EcoDXII	TCA N7 RTTC	406	23–139	211–341
IC	Ecopri	CCA N7 RTGC	405	22–159	232–360
ID	StySBLI	CGA N6 TACC	434	1–153	229–405
ID	EcoR9I	>146	1–146	35	
ID	KpnAI	GAG N7 GTCA	439	1–155	231–410
IC?	BsuCl	GAY N7 TGGA	405	23–162	219–355
IC?	MpuAI	GAY N7 TGGA	401	1–139	221–359
IC?	MpuBI	GAY N7 TGGA	336	1–139	188–324
ID?	HI0216	GAY N7 TGGA	385	20–138	198–333
ID?	HI1286	GAY N7 TGGA	459	1–176	268–445
?	mj0130	GAY N7 TGGA	425	23–161	231–371
?	mj1218	GAY N7 TGGA	425	28–155	226–368
?	mj1531	GAY N7 TGGA	425	28–170	241–371

a Escherichia coli; Sty, Salmonella enterica; Cfr, Citrobacter freundii; Bsu, Bacillus subtilis; Kpn, Klebsiella pneumoniae; Mpu, Mycoplasma pulmonis; HI, Haemophilus influenzae gene number; mj, Methanococcus jannaschi gene number. The systems in H. influenzae and M. jannaschi are putative type I systems.

b Where the target sequence is known, the reference for this work is given.

The TRDs of type I S subunits recognise a wide variety of 3, 4 or 5 bp targets and it would be of interest to define which amino acids within the large and highly variable sequence of the TRDs are responsible for sequence specificity. In this paper we use amino acid sequence alignment combined with secondary structure prediction methods. The use of secondary structure predictions enhances the strength of the amino acid alignment making distant similarities more apparent. These alignments of the TRDs suggest that all have the same tertiary structure and that they are the products of divergent evolution. A comparison of the secondary structure predictions with the known structure of the TRD of the HhaI mtase shows a strong similarity which has allowed us to define potential DNA recognition loops for all of the type I TRDs and to model the tertiary structure of these domains in a manner amenable to experimental verification.

MATERIALS AND METHODS

Most nucleotide or amino acid sequences of the S subunits were obtained from published references or GenBank and a database constructed which separated the sequences into TRDs and conserved spacer regions. The amino acid sequences for the S subunits of BsuCl and KpnAI were generously provided by Prof. T. Trautner and Dr G. Xu (Berlin) and Dr J. Ryu (Loma Linda). The locations of the TRDs in the S subunit sequence and, if known, their DNA target and type I family are given in Table 1. The amino terminal TRD and carboxyl terminal TRD are indicated by the suffix -1 or -2 appended to the type I system’s name in Figure 1.

A database of TRDs was made by separating conserved and unconserved regions of the S subunits and discarding the conserved regions. This database was inverted (every member was compared with every other one) using sss_align (47, S. Sturrock and A. Coulson, manuscript in preparation), a new implementation of the Smith and Waterman algorithm (48) using the Dayhoff PAM scoring scheme (49). The Smith and Waterman algorithm is a mathematically rigorous and exhaustive method to optimally align a pair of sequences. Each TRD sequence, along with its closest homologues, was then sent to the PHD program (50,51)
and a secondary structure prediction acquired. PHD is a secondary structure prediction method which uses a neural network trained with a set of known tertiary structures combined with multiple sequence alignment. On average secondary structure is predicted with >70% confidence. Each prediction was then placed in a new database and again inverted using sss_align but this time including the secondary structure prediction as well as amino acid sequence. sss_align takes into account the reliability index assigned by PHD on a residue by residue basis. This database inversion was performed with the QVAL parameter set at 80, PAMS 150, GAPOPEN 20 and GAPEXTEND 4. The QVAL parameter sets the amount of weighting given to the secondary structure when performing the sequence alignment. A value of 0 means the alignment uses only secondary structure information while a value of 100, as used in the first database inversion above, indicates that only sequence information is used in the alignment. A value of 80 was found to give the optimal statistical significance to the alignments of type I TRDs. In this instance, sss_align performs better than normal sequence alignment methods in aligning two distantly related sequences because the addition of secondary structure information, whether derived from a real structure or a prediction as in this case, is used to help the alignment pass through regions of very low sequence identity. The output of sss_align was again used to cluster sequences of high similarity and overlap these clusters with others until nearly all the TRD sequences were successfully aligned. Some TRD sequences could not be inserted into this alignment by the program due to a lack of obvious homology and these were aligned manually. These sequences are indicated in Figure 1 by an asterisk after the TRD name. In addition, sss_align also aligned the known tertiary structure of HhaI mtase (5) with the EcoKI-1 TRD to provide a key for the prediction of the location of loops and strands involved in DNA recognition. In this case, settings of PAMS 250, GAPOPEN 8, GAPEXTEND 1 and QVAL 60 were used to obtain the optimal alignment. These values were used successfully in the CASP2 competition (see below). To obtain a measure of the statistical significance of our alignment of type I TRDs with HhaI, we enlarged our database of TRDs by merging it with the approximately 2000 unique sequences with known tertiary structures in the protein databank. This enlarged database was then searched using sss_align and the TRD of HhaI to find homologous structures.

sss_align can be accessed at http://www.icmb.ed.ac.uk/ss aligned. Using secondary structure information from known structures, sss_align has been shown to successfully align sequences with only 15% amino acid identity (personal communication A. Coulson; CASP2, Second meeting on the critical assessment of techniques for protein structure prediction on World Wide Web URL: http://iris4.carb.nist.gov/casp2/). sss_align also adjusts for the variation in the reliability of the secondary structure predictions by using the residue by residue reliability of PHD predictions. This allows the program to align sequences even if parts have incorrectly predicted secondary structure.

RESULTS

Normal sequence alignment methods have been applied to complete S subunit sequences in the past (16,52). These studies were hampered not only by the limited number of sequences available but also by the high degree of sequence similarity in the conserved regions of the subunits. These restricted areas of high homology almost totally obscured any sequence similarity between TRDs except when the TRDs recognised identical DNA targets whereupon the similarity was so high as to preclude any prediction of amino acids involved in sequence recognition.

The result of applying sss_align (47) to the TRDs of type I S subunits is shown in Figure 1. In contrast to previous analyses, we were able to observe considerable sequence similarity between TRDs even if the TRDs recognised different DNA targets. The sequence identity between homologous TRDs ranged between 20 and 45% except for the TRDs which recognise the same DNA targets where identity was much greater (16,17). These sequence identities extended over ∼50–100% of the TRD sequence. All of the TRDs had at least one homologue with this level of identity except those TRDs indicated by an asterisk in Figure 1. Further smaller segments of TRDs with high levels of identity were also found identifying more distantly related sequences. Sequence alignment combined with the input of secondary structure prediction clustered the TRDs into several groups of high homology. Sequence information alone would have been sufficient to perform this alignment but the secondary structure prediction increased the significance of the alignment and frequently extended the lengths of the aligned segments. We were then able to align the clusters of homologous sequences with each other by using their predicted secondary structures and any small segments of sequence identity which existed between the clusters. The TRDs without any homologous sequences were then aligned manually by trying to obtain the best end to end match of predicted secondary structures and short local sequence similarities. β strand 1 was used as the centre point for the manual alignment of all groups of sequences. Using this predicted β strand to ‘lock’ the sequences together, it is apparent that many other predicted secondary structure features, particularly loops 1 and 2 and β strand 2, then become aligned even when sequences are very distantly related. Close inspection of Figure 1 suggests that some of the sequence alignments could be further ‘improved’ by the manual introduction of small gaps or deletions. Overall, we believe that these results are suggestive of a common tertiary structure for the TRDs of type I S subunits.

We compared our alignment of all 51 TRDs with the known sequence and secondary structure of the TRD of the C5-cytosine mtase HhaI (Fig. 1) (5). To our surprise, the two loops and one β strand which are responsible for the recognition of the DNA target of HhaI matched very well with our alignment of type I TRDs if the β strand preceding the first recognition loop in HhaI, is aligned with β strand 1 of our alignment of type I TRDs. A database containing all known unique protein structures as well as the TRDs and their predicted secondary structures, was searched with the TRD of HhaI. Statistically significant matches were only found with type I TRDs. The best alignment, with only a 10^-10 probability of occurring by chance, was against the first TRD of EcoKI. Figures of 14% sequence identity, 51% sequence conservation and 56% structural conservation over 73% of the total length of the TRD were obtained for the alignment shown at the top of Figure 1. Although the level of sequence identity between HhaI and EcoKI-1 is very low, a similar value was found in one of the successful applications of sss_align in the CASP2 competition (personal communication, A. Coulson). Therefore, we are very confident that the alignment between HhaI and the first TRD of EcoKI is correct.

Figure 2 shows the recognition of the DNA phosphate backbone and bases by part of the TRD of HhaI mtase. In HhaI,
Figure 1. Multiple sequence alignments and predicted secondary structures for 51 TRDs from type I S subunits. β strands are shown as yellow arrows and α helices as red rectangles. The sequence and known secondary structure of the TRD of HhaI type II mtase are shown at the top of the diagram followed by the type I TRDs arranged such that they are closest relatives as determined by sss_align. β strands 1, 2 and 3, and loops 1 and 2 which are involved in DNA recognition by HhaI and predicted to have the same role in type I TRDs, are marked above the HhaI secondary structure. Strands 1, 2 and 3 comprise amino acids 228–231, 240–243 and 264–267 in HhaI respectively. In the absence of DNA, amino acids 250–253 in HhaI also form a β strand.

loop 1 (Val232–Glu239) fills the major groove and positions Gln237 into the gap left by the flipped out cytosine base, β strand 2 (Arg240–Tyr242) makes important base and phosphate contacts, and Thr250–Phe259, as part of the long loop 2, makes further backbone and base contacts.

The agreement in length and composition of strand 1 is good between HhaI and all of the type I TRDs. Loop 1 is generally predicted to be shorter and β strand 2 longer than equivalent structures in HhaI. However, in the prediction for EcoKI-1 for example, the three amino acid long strand 2 is preceded by an extra predicted strand which may suggest that the extra length of strand 2 in many of our predictions is due to a tendency for PHD to overpredict the length of a strand or to merge two strands together. In HhaI, strand 2 commences with Arg240 and it is apparent that an equivalent basic amino acid, e.g. Lys92 in EcoKI, is present in many of the type I TRDs, though usually in the middle of the longer predicted strand 2. Arg240 in HhaI is involved in base recognition and perhaps suggests a similar role for these basic residues in type I S subunits. Loop 2 is 21 amino acids long in the HhaI–DNA cocrystal structure but in the absence of DNA, the loop is interrupted by a β strand at amino acids 250–253 (5,53). The existence of an equivalent extra β strand in the middle of loop 2 is predicted for many of the type I TRDs. In HhaI mtase, loop 2 terminates with another β strand, however, many of our predictions suggest that in type I TRDs, loop 2 is followed by an α helix. This may suggest that structure of type I TRDs deviates from that of HhaI at this junction.

We propose that our alignment indicates that the TRDs of type I S subunits contain a DNA sequence recognition region consisting of β strand 2 and loops 1 and 2 with the same tertiary structure as part of the TRD of HhaI C5-cytosine mtase.

The only other type II mtase structure cocrystallised with DNA is of the HaeIII C5-cytosine mtase. The HaeIII TRD is slightly less ordered than that of HhaI but the overall fold of the polypeptide backbone in the DNA recognition region is the same (6). Although all biochemically characterised type I R/M systems methylate the N6 position of adenine and the HhaI and HaeIII mtases methylate the C5 position of cytosine, there is no reason why they cannot use the same protein structure to recognise their DNA target since it has been shown for a number of mtases that
the nucleotide which is the target for methylation is not a major determinant of sequence specificity (54,55) and that sequence recognition can tolerate unusual base pairs (56). Our results make the experimentally testable prediction that amino acids in a well-defined and experimentally amenable region of the TRDs of type I S subunits are important for sequence recognition.

DISCUSSION

Combining the methods of multiple sequence alignment and secondary structure prediction within the sss_align program has facilitated the alignment of all 51 known or putative type I TRDs, overcoming the difficulties imposed by the large size of the TRDs and their very limited sequence conservation. The alignment bears a significant similarity to a short section responsible for DNA sequence specificity in the HhaI mtase. We suggest that this implies that all TRDs of type I S subunits are the products of divergent evolution with a conserved tertiary structure and that a small part of this structure, by analogy with HhaI mtase, is involved in DNA sequence recognition.

A variety of experiments such as UV-induced crosslinking to DNA (57), chemical modification of lysines (58) and random mutagenesis of TRDs (personal communication, M. O’Neill and N. E. Murray) have been applied to the best characterised type I R/M systems, EcoKI and EcoR124I, to identify amino acids involved in sequence recognition. These experiments provide preliminary support for our identification of a DNA binding region.

Chemical modification of EcoR124I showed that several lysines in the second TRD were susceptible to modification especially in the absence of bound DNA (58). Lysines 261, 297 and 327 within the TRD were particularly strongly modified. Lys297 is the most strongly modified residue and lies within the second proposed recognition loop. These three lysine residues are also conserved in the first TRD of StySKI which recognises the same DNA target as the second TRD of EcoR124I therefore supporting a role for them in sequence recognition (39). The other less strongly modified lysines in the second TRD may be required for non-specific DNA binding as they are not conserved in StySKI and lie outside of our predicted recognition region.

Random mutagenesis of the first TRD of EcoKI has so far changed 62 out of 150 amino acids (personal communication, M. O’Neill and N. E. Murray). Most of the mutations are silent, but five of seven mutations that impair restriction and modification are within the two putative recognition loops. The other two mutations occur shortly after the position of β3 in Figure 1.

UV-crosslinking demonstrated that Tyr27 in the first TRD of EcoKI was in contact in the major groove with the 3′ thymine base in the sequence complementary to the 5′ AAC part of the EcoKI target (57). This residue is outside of our predicted recognition loops, however, it has been found that changing it to other amino acids has a minor effect on DNA specificity suggesting that it may be involved in a non-sequence specific interaction with the DNA (personal communication, M. O’Neill and N. E. Murray).

Genes similar to the hsd genes of enteric bacteria have now been found in non-enteric bacteria and archaeabacteria (see references in Table 1) indicating that type I R/M systems are widespread in nature. It has been suggested that diversity within genes such as those forming type I R/M systems would be advantageous to a bacterial population (59,60). Furthermore, the diversity in hsd gene sequences observed in enteric bacteria provides support for horizontal gene transfer and a very ancient origin for the hsd genes (19,21). The presence of type I R/M systems on conjugative plasmids would assist the spread of hsd genes by horizontal transfer (61). The existence of a common tertiary structure for TRDs, as implied by Figure 1, would support this model for the distribution of type I systems in nature. Gene duplication of TRDs and transfer of TRDs by recombination is evident, not only from genetic and sequencing experiments (16,18,44,52,62), but also from biochemical results on the domain structure of the S subunit (23–26). Recombination was responsible for the generation of two new type I target specificities, StySQI and EcoR124/3I (22,63,64), and evidence for recombination of a short stretch of the hsdS gene between E.coli B and S.enterica serovar Potsdam has been found (19). It is possible that other recombination events could encompass the short region within the TRD which we have predicted to be involved in DNA recognition, thereby allowing the generation of new specificities. These experiments suggest that the type I S subunit is a fusion of two half S subunits each containing one TRD to give a 2-fold rotationally symmetric arrangement of the TRDs and a bipartite DNA target (24,25,27,28,65). Horizontal gene transfer has also

Figure 2. Part of the TRD of HhaI mtase bound to its DNA target with loops 1 and 2 highlighted in magenta and cyan respectively (5). β strands 1, 2 and 3 are shown in red, green and yellow respectively. The extrahelical cytosine base projects out of the minor groove into the catalytic site within the methylation domain. This methylation domain is present in the M subunits of type I R/M enzymes (28).
been proposed for the type II R/M systems (66). The range of organisms in which type I systems have been found or postulated, and their diversity within species such as E. coli and S. enterica, could also suggest that a large pool of TRDs existed before the evolution of different bacterial species. Therefore, it may be possible to have similar TRDs in different species even without invoking horizontal transfer, if they both carried with them the possible to have similar TRDs in different species even without divergence (67).

If our alignments are realistic, then the similarity between TRDs of type I N6-adenine mtases and the TRDs of C5-cytosine mtases may extend further to many, if not all, TRDs of type II N6-adenine mtases, type III mtases and other mtases which do not belong to the ID family. See S. K. Highlander and O. Garza (1996), Nature, 375, 260–269. The range of the S subunit with that of HI1286. The TRDs of this system fit the tertiary structure within TRDs implies that it may eventually be possible to derive the amino acid recognition code used by TRDs to recognise DNA sequences as is currently being revealed for zinc finger-DNA recognition (3).

NOTE ADDED IN PROOF

Pasteurella haemolytica also appears to contain a type I system belonging to the ID family. See S. K. Highlander and O. Garza (1996), Gene, 178, 89–96 for the gene sequences and alignment of the S subunit with that of HI1286. The TRDs of this system fit the alignment scheme shown in Figure 1.

ACKNOWLEDGEMENTS

We wish to thank Professor Noreen Murray, Dr Andrew Coulson and our colleagues in their laboratories, particularly Dr Mary O’Neill, for provision of unpublished data and many useful discussions. We also thank Professor Thomas Trautner and Dr Guoliang Xu (Berlin), and Dr Junichi Ryu (Loma Linda) for the provision of unpublished sequences and other information. This work would not have been possible without the support of The Royal Society and The Darwin Trust. David Dryden thanks the Royal Society for a University Research Fellowship and Shane Sturrock thanks the Biochemical and Biological Sciences Research Council for a studentship.

REFERENCES