Edinburgh Research Explorer

High-field ground-state level crossing and magnetic susceptibility of an \{Fe-8\}-cubane cluster

Citation for published version:

Digital Object Identifier (DOI):
10.1103/PhysRevB.80.092401

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Physical Review B

Publisher Rights Statement:
Copyright 2009 The American Physical Society. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Physical Society.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
I. INTRODUCTION

Due to swift progress in the chemical synthesis of a wide variety of bulk crystalline samples of transition-metal cluster compounds, one can now explore the magnetic properties of diverse nanosize units. The dominant magnetic interactions within the bulk sample are intracluster interactions so that the sample is equivalent to a macroscopic ensemble of magnetically independent identical paramagnetic clusters. For one such recent cluster compound, \{Fe\}_8 cubane, the subject of this Brief Report, it has been proposed that the paramagnetic properties are due to two distinct intracluster isotropic exchange interactions between eight Fe^{3+} ions (spin 5/2). The values of the two exchange constants were determined by optimizing the fit between experimental and model data for the temperature-dependent weak-field magnetic susceptibility. However, a decisive confirmation of the model requires similar successes for other measurable quantities.

In this Brief Report we show that the theoretical model of Ref. 9 also correctly describes the magnetic field dependence of the differential susceptibility \(dM/dH\) at fixed low temperatures. In particular, we report results for this quantity using a pulsed-field technique up to 54 T for two temperatures, 1.3 and 4.2 K. Of special interest, our measured data exhibit a single well isolated peak at approximately 42 T. This is to be compared to the theoretical prediction of a singlet state and the ground state and the peak is a direct consequence of the fact that the ground-state energy level has total angular momentum number \(S=0\) in the field range from 0 to 41 T, \(S=1\) from 41 until 81 T, followed by a transition to \(S=2\), etc. Besides correctly reproducing the magnetic field associated with the peak, detailed features of the temperature and field dependence of the width and height of the observed peak.

II. EXPERIMENT

The magnetization was measured on a powder sample at the Institute for Solid State Physics by a standard inductive method for asymmetric half-cycle sweeps with a duration of 10 ms. Utilizing fast digitizers, the inductive method provides data for \(dM/dt\) and \(dH/dt\), which are subsequently integrated to give results for \(M\) versus \(H\) up to 54 T. The sample was immersed in liquid He to maintain good thermal contact with the thermal bath. The resulting data for \(M\) versus \(H\) as obtained for the up and down portions of the half cycle were in good agreement, indicating that hysteresis effects are negligible. The measurements were performed for two temperatures, 4.2 K and 1.3 K. The data for \(dM/dH\) for 4.2 K are shown in Fig. 1, where a peak is clearly visible at \(H=42\ T\).

The peak that has been observed at 42 T is to be expected, as it corresponds to a zero-field energy gap of \(\Delta/k_B\) = 55 K between the \(S=0\) (singlet) ground state and the \(S=1\) (triplet) first excited state. (Here \(k_B\) denotes Boltzmann’s constant.) This value of \(\Delta\) was previously reported in Ref. 9. As the field increases from zero, the gap shrinks between the \(S=1\), \(M=1\) state and the \(S=0\), \(M=0\) state, until these energy levels cross. The expected level-crossing field, \(H_{1}\), is given by the relation \(g\mu_BH_1=\Delta\), where the spectroscopic splitting factor is chosen as \(g=2\), yielding \(H_1=41\ T\). The small discrepancy between the values of the predicted (41 T) and observed (42 T) level-crossing fields can be attributed to the small uncertainty in the model parameters that were determined in Ref. 9.
A detailed theoretical description of the present data can be achieved using a simplified (two-level) replacement of the Heisenberg model. This is because—although the full energy spectrum of \{Fe₈\}-cubane involves more than 1⁰⁶ eigenstates—for \(H < 54 \) T only the state \(S = 1, M = 1 \) has an energy within 50 K of the \(S = 0, M = 0 \) ground state. Hence, for \(T < 5 \) K, only these two states will have a significant thermal occupation. Therefore, we are able to use a two-level model, for which \(dM/dH \) is given by

\[
\frac{dM}{dH} = \frac{1}{4} (g \mu_B)^2 \beta \text{sech}^2(y),
\]

where \(M \) denotes the magnetic moment of an individual cluster, \(\beta = 1/k_B T \), and \(y = \beta (g \mu_B H - \Delta) \). The solid line that appears in Fig. 1 is given by Eq. (1) upon setting \(g = 2 \) and \(\Delta/k_B = 55 \) K. Due to the nature of the experiment, the measured values of \(dM/dH \) were initially expressed in arbitrary units. To obtain the absolute units shown in Fig. 1, the experimental data were multiplied by a constant factor, 0.23 \(\mu_B^2/k_B \), in order to optimize the fit between theory and experiment. This process of fitting the \(T = 4.2 \) K data to Eq. (1) fixed the value of the only adjustable parameter. It should be noted that the width of the measured peak is in excellent agreement, irrespective of this calibration process. To verify the applicability of the two-level formula of Eq. (1), the measurement was repeated at \(T = 1.3 \) K, and these data were multiplied by the same constant, 0.23 \(\mu_B^2/k_B \). This lower temperature measurement should yield a narrower, taller peak in \(dM/dH \), still occurring at the same field. These data are shown in Fig. 2, where indeed the peak has become narrower and taller. These measurements are in very good agreement with the theory, where the solid line in Fig. 2 is given by Eq. (1), again setting \(g = 2 \) and \(\Delta/k_B = 55 \) K.

III. DISCUSSION

The key result of this Brief Report is that our measurements of the differential susceptibility \(dM/dH \) of the \{Fe₈\}-cubane cluster are in quantitative agreement with the predictions based on the Heisenberg model proposed in Ref. 9. In particular, we have observed a ground-state level crossing at 42 T, in close agreement with the predicted (41 T) field value. Moreover, the temperature and field dependence of the corresponding peak in \(dM/dH \) are in close agreement with that predicted by the model. Alternatively, the present measurements could have shown this model to be insufficient for describing the present data since the parameters of the Heisenberg model, namely, the values of the exchange constants, were determined solely by optimizing the fit between the experimental and theoretical temperature-dependent weak-field susceptibilities. It is therefore both satisfying, and quite remarkable, that this cluster can be so successfully described by a simple isotropic Heisenberg model based on two exchange constants.

ACKNOWLEDGMENTS

H.N. acknowledges support by a Grant-in-Aid on Priority Areas “High Field Spin Science in 100T” (Grant No. 451) from MEXT, Japan. L.E. would like to thank the FMU Professional Development Committee. Work at the Ames Laboratory was supported by the Basic Energy Sciences, Department of Energy under Contract No. DE-AC02-07CH11358.

8 \(\text{Fe}_8\) cubane abbreviates the compound with the chemical formula \([\text{Fe}^{III}_8\text{O}_4(\text{sao})_3(\text{py})_2]\). It is prepared using the ligand salicylaldehyde oxime (saoH$_2$; IUPAC name: 2-hydroxybenzaldehyde oxime) [I. A. Gass, C. J. Milios, A. G. Whittaker, F. P. A. Fabiani, S. Parsons, M. Murrie, S. P. Perlepes, and E. K. Brechin, Inorg. Chem. 45, 5281 (2006)].

10 The existence of a second predicted level crossing at 81 T is due to the fact that in zero field the next higher level has \(S=2\) with an energy 164 K above the lowest \(S=0\) level (Ref. 9). This could not be tested, as it is outside the current range of our experimental facilities.

11 The measured magnetization versus field was independently calibrated using a standard sample, and it was found that the value of the magnetization at 55 T and 1.3 K was indeed \(2\mu_B/\text{f.u.}\), in agreement with theory.