Clopidogrel reduces platelet-leucocyte aggregation, monocyte activation and RANTES secretion in type 2 diabetes mellitus

Citation for published version:
Harding, SA, Sarma, J, Din, JN, Maciocia, PM, Newby, DE & Fox, KAA 2006, 'Clopidogrel reduces platelet-leucocyte aggregation, monocyte activation and RANTES secretion in type 2 diabetes mellitus' Heart, vol. 92, no. 9, pp. 1335-7. DOI: 10.1136/hrt.2005.083006

Digital Object Identifier (DOI):
10.1136/hrt.2005.083006

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Heart

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Patients with diabetes mellitus have an increased risk of developing atherosclerosis and its sequelae. Atherosclerosis is an inflammatory disease involving multiple interactions between platelets, leucocytes and endothelial cells.\(^1\) Clopidogrel, a specific antagonist of the ADP P2Y\(_{12}\) receptor, inhibits both platelet activation and aggregation induced by ADP.\(^2\) Although clopidogrel has well-documented antithrombotic actions, its potential anti-inflammatory effects have been little investigated. We examined whether specific platelet inhibition with clopidogrel would reduce systemic inflammatory markers and specifically platelet, monocyte and endothelial activation in patients with type 2 diabetes mellitus.

METHODS

We enrolled 20 patients with type 2 diabetes mellitus without clinical evidence of cardiovascular disease, malignancy, chronic inflammatory disorders, intermittent illness, renal or hepatic insufficiency or contraindications to clopidogrel who had not taken antiplatelet agents within the preceding two weeks. Ethical approval was obtained from the local ethics committee and all participants provided written informed consent. They were treated with clopidogrel 75 mg daily for 28 days. Fasting peripheral venous blood samples were obtained at baseline and at 28 days. Plasma concentrations of soluble CD40 ligand (sCD40L) (Bender MedSystems) and sE-selectin (Bender MedSystems) were determined by enzyme-linked immunosorbent assays.

RESULTS

Participants (51 (7) years) had a diagnosis of diabetes for 6 (4) years with mean haemoglobin A1c of 7.9 (1.4)% indicating moderate glycaemic control. Baseline and four-week fasting plasma glucose concentrations, haemoglobin A1c and fasting lipid profiles were similar (data not shown, NS).

Clopidogrel treatment reduced platelet surface P-selectin (5.6 (2.8)% vs 3.7 (1.8)%, p = 0.002) but not CD40L expression (3.3 (0.7)% vs 3.4 (1.0)% p = 0.7). Monocyte surface expression of CD40 (40.7 (5.9)% vs 35.0 (6.5)% p = 0.007) and CD11b (74.8 (7.5) vs 60.0 (5.9) mean fluorescence intensity, p = 0.02) were reduced after clopidogrel treatment. Clopidogrel treatment reduced both platelet–monocyte (23.2 (7.6)% vs 17.8 (7.4)%, p = 0.01) and platelet–neutrophil (7.7 (2.9)% vs 6.0 (2.3)% p = 0.04) binding (fig 1).

Plasma concentrations of the platelet-derived chemokine RANTES (3722 (1123.0) pg/ml vs 1476 (1229) pg/ml, p < 0.0001) were greatly reduced. However, concentrations of sCD40L (0.24 (0.42) ng/l vs 0.23 (0.32) ng/l, p = 0.24) and sE-selectin (67.8 940.3) ng/ml vs 70.0 (40.5) ng/ml, p = 0.44) were unchanged after clopidogrel treatment.

DISCUSSION

Over the past decade it has become apparent that complex signalling occurs between platelets, leucocytes and endothelial cells, and that these interactions have proinflammatory and proatherosclerotic consequences.\(^1\)\(^3\) Xiao and Théroux\(^4\) have previously reported that clopidogrel attenuated the excess platelet–monocyte and platelet–neutrophil conjugates in patients with acute coronary syndromes. Consistent with these findings, our results show that clopidogrel treatment in patients with diabetes mellitus also reduces platelet–leucocyte conjugates despite considerably lower levels of platelet activation. In addition, we have shown that clopidogrel was associated with less monocyte surface expression of CD40 and CD11b indicating reduced monocyte activation. Reduction of platelet–leucocyte interactions and monocyte

Abbreviations: FITC, fluorescein isothiocyanate; PBS, phosphate-buffered saline; PE, phycoerythrin; RANTES, regulated on activation normal T cell expressed presumed secreted; sCD40L, soluble CD40 ligand
activation may well contribute to the clinical benefits of clopidogrel.

RANTES mediates monocyte and lymphocyte recruitment to sites of vascular injury and has a key role in the progression of atherosclerosis. RANTES may be secreted by several cell types including activated platelets and leucocytes. In our study clopidogrel reduced both platelet and monocyte activation and it is therefore not surprising that clopidogrel also greatly reduced plasma RANTES concentrations. This reduced RANTES secretion provides another potential anti-inflammatory mechanism that may contribute to the clinical benefits of clopidogrel.

CD40L has been shown to mediate a broad range of proinflammatory and prothrombotic responses. In contrast to P-selectin and RANTES, neither platelet surface expression of CD40L nor sCD40L was reduced by clopidogrel. Variable effects of clopidogrel on sCD40L have previously been reported. Xiao and Théroux reported a 27% reduction in plasma concentrations of sCD40L in patients with acute coronary syndromes, whereas Quinn et al. found that clopidogrel did not affect pre- or post-procedure sCD40L concentrations in patients undergoing percutaneous coronary intervention. In the present study, baseline platelet activation and sCD40L levels were substantially lower than in the acute coronary syndrome population studied by Xiao and Théroux, in which the sCD40L reductions were greatest with baseline concentrations > 0.5 ng/ml. In our study only one participant had an sCD40L concentration > 0.5 ng/ml and in this patient clopidogrel caused a 23% reduction. These findings suggest that clopidogrel may not have the same effect on CD40L in patients with lower baseline levels of platelet activation and sCD40L.

In conclusion, clopidogrel treatment in patients with type 2 diabetes mellitus not only reduces platelet activation but also reduces platelet–leucocyte interactions, monocyte activation and plasma concentrations of the chemokine RANTES. These findings provide further support for the hypothesis that clopidogrel has important anti-inflammatory actions that may contribute to its clinical benefits.

Authors’ affiliations
5 A Harding, Department of Cardiology, Wellington Hospital, Wellington, New Zealand
J Sarma, J N Din, P M Maciocia, D E Newby, K A A Fox, Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
Grant support: Drs Harding and Din were supported by grants from the British Heart Foundation (PG/2001/068; PG/03/009)
Competing interests: Professor Fox has received grant support for the Global Registry of Acute Coronary Events (GRACE) from Sanofi-Aventis. All other authors have no conflict of interest to declare
Correspondence to: Dr Scott Harding, Department of Cardiology, Wellington Hospital, Private Bag 7902, Wellington, New Zealand; scott.harding@ccdhb.org.nz
Accepted 3 March 2006

REFERENCES
IMAGES IN CARDIOLOGY

Cardiac compression from a rheumatoid pericardial mass

A 75-year-old man presented with progressive dyspnoea. There was a 24-year history of severe deforming rheumatoid arthritis for which he had required a number of disease modifying therapies. At the time of admission his symptoms were controlled on non-steroidal anti-inflammatory drugs (NSAIDs) and prednisolone. He had no clinical signs of cardiac tamponade on presentation; however, a chest radiograph showed an enlarged cardiac silhouette and bilateral pleural effusions. A transthoracic echocardiogram and computed tomographic (CT) scan of the thorax (left panel) confirmed a large loculated pericardial effusion with compression of the right ventricular cavity. Aspiration of pleural fluid confirmed a transudate with a normal glucose. Pericardiocentesis resulted in an improvement in his symptoms. No malignant cells were seen and he was discharged for outpatient follow up. His symptoms recurred as did the pericardial effusion and he was transferred to a cardiothoracic centre for surgery. At operation a large and friable pericardial mass was debrided and a pericardial window was performed. Histology revealed fibrinous pericardium and chronic inflammatory infiltrates (middle and right panels). There was a further recurrence at four weeks and despite further drainage and aggressive immunosuppression he did not recover and the postmortem examination confirmed bilateral pulmonary emboli.

Pericardial compression in rheumatoid arthritis is rare. Pericardiocentesis and the formation of a pericardial window only provide temporary improvement and we suggest that the definitive treatment should be a pericardectomy. To our knowledge this is the only description of a histologically proven rheumatoid inflammatory mass presenting as cardiac compression.

Lipomatous metaplasia in myocardial infarction detected by cardiovascular magnetic resonance

A 64-year-old man with a prior history of anterior wall myocardial infarction treated with thrombolysis in 1992, followed 10 years later by coronary artery bypass surgery, underwent cardiovascular magnetic resonance examination (CMR) for quantification of residual left ventricular function. Steady state free precession cine-CMR demonstrated thinned myocardium with dyskinesis of the distal anteroseptal and apical left ventricular regions consistent with an old myocardial infarction. Areas of unusual signal intensity compared to that of the surrounding myocardium were noted on cine-CMR within the infarcted region. These areas were confirmed to be composed of adipose tissue due to their characteristic high signal intensity on T1-weighted turbo spin echo images and complete disappearance of signal using fat suppression. The adipose tissue also had high signal intensity on two-dimensional inversion recovery images obtained before administration of gadolinium-based contrast (see panel) and was surrounded by areas of myocardial fibrosis demonstrated on late contrast-enhanced (LCE) images. These findings are consistent with lipomatous metaplasia in the region of an old myocardial infarction. This case demonstrates that a high signal intensity on LCE images may not always represent fibrosis alone in regions of old myocardial infarction.