External validation of a six simple variable model of stroke outcome and verification in hyper-acute stroke

Citation for published version:

Digital Object Identifier (DOI):
10.1136/jnnp.2007.118802

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Neurology Neurosurgery & Psychiatry

Publisher Rights Statement:
BMJ publishing group 2007

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
External validation of a six simple variable model of stroke outcome and verification in hyper-acute stroke

J M Reid, G J Gubitz, D Dai, Y Reidy, C Christian, C Counsell, M Dennis, S J Phillips

We aimed to validate a previously described six simple variable (SSV) model that was developed from acute and sub-acute stroke patients in our population that included hyper-acute stroke patients. A Stroke Outcome Study enrolled patients from 2001 to 2002. Functional status was assessed at 6 months using the modified Rankin Scale (mRS). SSV model performance was tested in our cohort. 538 acute ischaemic (87%) and haemorrhagic stroke patients were enrolled, 51% of whom presented to hospital within 6 h of symptom recognition. At 6 months post-stroke, 42% of patients had a good outcome (mRS ≤2). Stroke patients presenting within 6 h of symptom recognition were significantly older with higher stroke severity. In our Stroke Outcome Study dataset, the SSV model had an area under the curve of 0.792 for 6 month outcomes and performed well for hyper-acute or post-stroke, age < or ≥75 years, haemorrhagic or ischaemic stroke, men or women, moderate and severe stroke, but poorly for mild stroke. This study confirms the external validity of the SSV model in our hospital stroke population. This model can therefore be utilised for stratification in acute and hyper-acute stroke trials.

RESULTS

Of 598 patients admitted to the stroke service between 2001 and 2002, 38 refused consent, 13 had repeat admissions (second admission excluded) and nine were lost to follow-up, leaving a final study group of 538 patients (70 haemorrhagic and 468 ischaemic strokes) (table 1). Forty-seven per cent of patients were women. Compared with patients presenting ≥6 h after stroke symptom recognition, hyper-acute patients (ie, presenting <6 h) were significantly older, with higher stroke severity (table 1). At 6 months post-stroke, 42% had a good outcome (mRS ≤2) and 24% were dead.

Testing the SSV model (variables listed in table 1) for a good outcome at 6 months produced an AUC of 0.792 (SE 0.024) with good calibration curves (available from authors). The SSV model performed well for different subgroups: age < or ≥75 (AUC 0.800 (0.017) vs 0.846 (0.020); NS), haemorrhagic versus ischaemic (0.846 (0.038) vs 0.779 (0.031); p<0.05) and hyper-acute versus post-acute (0.802 (0.031) vs 0.761 (0.034); NS). It performed reasonably for moderate (0.675 (0.033)) and severe stroke (0.782 (0.026); p<0.001 compared with moderate and mild stroke) but no better than chance for mild stroke (0.457 (0.029)). Haemorrhagic stroke had a higher median stroke severity compared with ischaemic stroke (8 vs 6; p=0.0002).

DISCUSSION

We confirm that the SSV model for predicting independent survival at 6 months has external validity in our stroke population and we demonstrate for the first time that the model performs well in a large population of hyper-acute stroke patients, 11% of whom received thrombolysis. As shown previously,1 the SSV model performed less well in minor stroke. The reason for this needs further analysis, however, patients initially seen with mild strokes at first assessment may develop
stroke progression or recurrence, or a new illness (such as a myocardial infarction) which is not predicted by the SSV model. Also, an outcome of mRS ≤2 may be a less discriminating outcome in mild stroke as it was achieved in 84% of mild stroke patients. The model performs significantly better for patients with higher stroke severity and for haemorrhagic stroke, probably because the latter were more severe than ischaemic strokes. The good model performance in haemorrhagic stroke is important as the original study from which the SSV model was developed may have underestimated the proportion of patients with haemorrhagic stroke.†

The SSV model uses variables that can be easily collected compared with some models that use scales that require training (eg, the National Institutes of Health Stroke Scale). This is noteworthy given that non-neurologists routinely assess the majority of stroke patients in hospitals worldwide. It would be of interest to directly compare SSV model performance with models that use other stroke scales in validation cohorts.

Our population reflects inpatients from a tertiary stroke referral centre and teaching hospital, and the SSV model would benefit from further validation in less academic units. Our study benefits from the low rate lost to follow-up and the high consent rate.

In conclusion, this study confirms the external validity of the SSV model in hospitalised stroke patients, providing the first evidence of validity in hyper-acute strokes. The SSV model can therefore be utilised for stratification in acute stroke trials. However, its use in clinical management (particularly in selecting which patients are suitable for specific treatments—eg, thrombolysis) cannot be recommended until it has been evaluated in randomised controlled trials.

ACKNOWLEDGEMENTS
The Stroke Outcomes Study is a research project funded by the Capital Health Research Fund and the Nova Scotia Health Research Foundation.

Table 1 Patient characteristics and comparison of hyper-acute versus post-acute stroke patients

<table>
<thead>
<tr>
<th></th>
<th>Enrolled patients</th>
<th>Hyper-acute (<6 h)</th>
<th>Post-acute (>6 h)</th>
<th>OR of a good outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>538</td>
<td>273</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>Stroke severity score*</td>
<td>6 (5–8)</td>
<td>7 (6–9)</td>
<td>6 (5–7)††</td>
<td>0.49 (0.43–0.56)††</td>
</tr>
<tr>
<td>Haemorrhagic stroke</td>
<td>70 (13%)</td>
<td>32 (12%)</td>
<td>38 (14%)</td>
<td>0.58 (0.26–1.00)†</td>
</tr>
<tr>
<td>Received tissue plasminogen activator</td>
<td>29 (5%)</td>
<td>29 (11%)</td>
<td>0††</td>
<td>0.60 (0.23–1.40)†</td>
</tr>
<tr>
<td>Six simple variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Age*</td>
<td>74 (61–80)</td>
<td>75 (65–81)</td>
<td>71 (59–79)††</td>
<td>0.95 (0.91–0.98)††</td>
</tr>
<tr>
<td>(2) Living alone pre-stroke</td>
<td>135 (25%)</td>
<td>64 (23%)</td>
<td>71 (27%)</td>
<td>1.1 (0.7–1.6)</td>
</tr>
<tr>
<td>(3) Independent pre-stroke</td>
<td>437 (81%)</td>
<td>214 (78%)</td>
<td>223 (84%)</td>
<td>53 (1.4–4.47)††</td>
</tr>
<tr>
<td>(4) Verbal GCS = 5</td>
<td>347 (65%)</td>
<td>145 (53%)</td>
<td>202 (76%)††</td>
<td>7.1 (4.5–11.5)††</td>
</tr>
<tr>
<td>(5) Able to lift both arms off bed</td>
<td>353 (66%)</td>
<td>147 (54%)</td>
<td>206 (78%)††</td>
<td>9.2 (5.6–15.5)††</td>
</tr>
<tr>
<td>(6) Able to walk without assistance</td>
<td>150 (28%)</td>
<td>54 (20%)</td>
<td>96 (36%)</td>
<td>7.6 (4.8–12.1)††</td>
</tr>
</tbody>
</table>

GCS, Glasgow Coma Score.
*Data are expressed as median (interquartile range) and odds ratios with 95% CI. Odds ratios for age and stroke severity are per unit.
†p<0.05, ††p<0.001.

References

5 Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29–36.