Solid-state structures of the covalent hydrides germane and stannane

Iain J. Maley, Daniel H. Brown, Richard M. Ibberson and Colin R. Pulham

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Acta Crystallographica Section B: Structural Science publishes papers in structural chemistry and solid-state physics in which structure is the primary focus of the work reported. The central themes are the acquisition of structural knowledge from novel experimental observations or from existing data, the correlation of structural knowledge with physicochemical and other properties, and the application of this knowledge to solve problems in the structural domain. The journal covers metals and alloys, inorganics and minerals, metal-organics and purely organic compounds.

Crystallography Journals Online is available from journals.iucr.org
Solid-state structures of the covalent hydrides

germane and stannane

The low-temperature crystal structures of perdeuterogermane
(m.p. 108 K) and perdeuterostannane (m.p. 123 K) are
reported. The structures have been characterized from low-
temperature (5 K) high-resolution neutron powder diffraction
experiments following sample preparation using in situ gas-
condensation techniques. GeD₄ crystallizes in an orthorhombic structure, space group \(P_{2_1}2_12_1 \), with one molecule
in the asymmetric unit, and with an average Ge—D bond
length of 1.517 (3) Å. The SnD₄ structure is monoclinic (space
group \(C2/c \)), and the molecule is located on a twofold rotation
axis with an average Sn—D bond length of 1.706 (3) Å.
The crystal structures are discussed in relation to those of other
etrahedral molecules of group IV hydrides at low tempera-
ture, and evidence is presented that the crystal structure of
silane, below 38 K, is isostructural with germane.

1. Introduction

The group IV hydrides have attracted attention recently
following the suggestion by Ashcroft (2004) that the ‘chemi-
cally pre-compressed’ hydrogen in these alloys may promote
metalization, making them candidate materials for high-
\(T_c \) superconductors at pressures achievable in diamond–anvil
cells. Initial theoretical studies on silane, SiH₄ (Feng et al.,
2006), have been followed by first-principles calculations on
GeH₄ (Li et al., 2007; Martinez-Canales et al., 2006) and most
recently on SnH₄ (Tse et al., 2007). However, little is known
about the solid-state structures of these compounds, under
either ambient or high-pressure conditions.

In the case of silane, three phases have been reported
following X-ray (Sears & Morrison, 1975) and neutron powder
diffraction (Legrand & Press, 1976). The phase I structure is
most likely tetragonal and is stable between the melting point
at 89 K and down to 64 K. No structural information is
available for phase II or phase III, the latter is thought to be
stable below 38 K. A high-pressure monoclinic phase of silane
has recently been observed and solved between 10 and 25 GPa
(Degtyareva et al., 2007). There are no reports of crystal
structure information for solid germane or stannane; however,
an extensive literature regarding spectroscopic studies and
physical property measurements is available for these
compounds and their perdeuterated isotopologues. In the case
of germane, heat-capacity measurements (Clusius & Faber,
1942; Mountfield & Weir, 1978) detect the presence of three \(\lambda \)-
type transitions at 63, 74 and 77 K between the melting point
at 107 and 3 K. NMR measurements on polycrystalline GeD₄
(Hovi et al., 1969) suggest that the transitions at 78 and 75 K
are first-order and associated with ordering of molecular
reorientation; however, the 68 K transition is of higher order.
IR spectra of solid germane (McKean & Chalmers, 1967; The
et al., 1974) were interpreted on the basis of the four phases; however, subsequent studies (Oxton, 1977; Calvani et al., 1990, 1991) questioned the existence of a fourth phase with symmetry lower than that of phase III. In the case of stannane, its lability represents a major difficulty for solid-state studies. NMR studies in the range 68–129 K reveal a phase transition at 98 K for SnH4 (Niema et al., 1972) and at 103 K for the deuterated analogue (Niema, 1973). No spectroscopic evidence for a transition point was found using IR spectroscopy (McKean & Chalmers, 1967). Isotope effects on the transition points of silane, germane and stannane are seen to increase the transition points by up to 5 K for the deuterated analogue (Niemela, 1973). No spectroscopic evidence for a transition point was found using IR spectroscopy (Aldridge et al., 1997), and H2GaBH4 (Downs et al., 1997) have been determined successfully by single-crystal X-ray diffraction. A recurring theme in these structures is one of intermolecular interactions involving bridging H atoms resulting in the adoption of polymeric structures. In contrast, the structures of hydride derivatives of the heavier Group 14 elements have scarcely been investigated. A single-crystal X-ray diffraction study of GeH3Cl (Blake et al., 1987) showed the presence of strong Ge· · ·Cl intermolecular interactions.

Attempts to grow single crystals of stannane at low temperatures from the liquid sealed in glass capillaries failed on account of the very low melting point of stannane (123 K), making it difficult to maintain the temperature gradients required for high-quality crystal growth. Since germane has an even lower melting point (108 K), no attempts at single-crystal growth were made. Prompted by the fundamental nature of these hydrides and the current level of interest, the crystal structures of the low-temperature phases of perdeuterogermane and -stannane have now been investigated using high-resolution neutron powder diffraction.

2. Experimental

2.1. Sample preparation

Samples of perdeuterated germane, GeD4, and stannane, SnD4, were prepared from the respective tetrahalides and lithium aluminium deuteride (Aldrich 98 D-atom %) according to standard procedures. Powder samples were produced using a vapour-deposition technique as follows. The samples were prepared in a standard vanadium-tailed liquid-helium ‘orange’ cryostat using a centre stick incorporating a

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Germane</th>
<th>Stannane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal data</td>
<td>D4Ge</td>
<td>D4Sn</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>80.65</td>
<td>126.75</td>
</tr>
<tr>
<td>M0</td>
<td>Orthonorm, P212121</td>
<td>Monoclinic, C2/c</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>7.35565 (17), 8.15934 (11), 4.53932 (11)</td>
<td>8.87431 (14), 4.54743 (7), 8.75705 (12)</td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>90</td>
<td>119.2882 (10)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>272.44 (1)</td>
<td>308.22 (1)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ds (Mg m⁻³)</td>
<td>1.966</td>
<td>2.731</td>
</tr>
<tr>
<td>Radiation type</td>
<td>Time-of-flight neutron</td>
<td>Time-of-flight neutron</td>
</tr>
<tr>
<td>Powder preparation temper-</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>ture (K)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data collection

<table>
<thead>
<tr>
<th>Diffractometer</th>
<th>HRPD</th>
<th>HRPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection method</td>
<td>Specimen mounting: standard cylindrical vanadium sample holder; scan method: TOF† range 30–130 ms</td>
<td>Specimen mounting: standard cylindrical vanadium sample holder; scan method: TOF† range 30–130 ms</td>
</tr>
<tr>
<td>(2θ) (°)</td>
<td>168</td>
<td>168</td>
</tr>
</tbody>
</table>

Refinement

R factors and goodness of fit	Rwp = 0.061, Rexp = 0.069, Rexp = 0.043, S = 1.60	Rwp = 0.111, Rexp = 0.124, Rexp = 0.062, S = 2.03
Wavelength of incident radia-	1.2–5.2	1.2–5.2
tion (Å)		
Excluded region(s)	96–104 ms	96–104 ms
Profile function	TOPAS TOF pseudo-Voigt	TOPAS TOF pseudo-Voigt
No. of parameters	45	35
D-atom treatment	All D-atom parameters refined	All D-atom parameters refined
Weighting scheme	Based on measured s.u.’s 0.01	Based on measured s.u.’s 0.02
Preferred orientation corre-	Spherical harmonic order = 6	Spherical harmonic order = 6
ction		

Computer programs used: TOPAS-Academic (Coelho, 2008), standard HRPD normalization routines. † TOF = time of flight.
2.2. Neutron powder diffraction measurements

Time-of-flight neutron powder diffraction data were collected on the high-resolution powder diffractometer (HRPD; Ibberson et al., 1992) at the ISIS pulsed neutron source. For the present experiments at backscattering \((2\theta) = 168^\circ\) two time-of-flight ranges were used, 30–130 and 110–210 ms, corresponding to a total distance range of \(\approx 0.6–4.2\ \text{Å}\). Under these experimental settings the diffraction data have an approximately constant resolution of \(\Delta d/d = 8 \times 10^{-4}\). HRPD has additional detector banks at 90 and 30\(^\circ\), which significantly extend the range of d-spacings which are accessible; however, these data were not required in the present studies. Diffraction data were recorded on both compounds at the condensation temperature for a brief period and then at 5 K for a period of some 12 h. Both samples were weakly scattering and insufficient beamtime was available in order to carry out measurements as a function of temperature. A standard data reduction procedure was followed: the data were normalized to the incident-beam monitor profile and corrected for the effects of detector efficiency as a function of neutron wavelength using a previously recorded vanadium spectrum.

2.3. Structure solution and refinement

For both samples, the first 25 low-order Bragg reflections \((1.5 < d < 4.0\ \text{Å})\) at the condensation temperature were located by visual inspection, to an accuracy of 0.001 Å, and the unit cell determined using the auto-indexing program DICVOL (Boutilif & Louër, 2004) and also using TOPAS-Academic (Coehlo, 2008). In each case solutions with a high figure of merit were obtained and these cell parameters were readily refined against the 5 K data indicating no structural phase transitions had occurred on cooling. A primitive orthorhombic cell was determined for germane and a C-centred monoclinic cell in the case of stannane (Table 1). There were a number of unindexed lines corresponding to contaminant scattering from copper and vanadium from the centre stick and the strongest of these peaks were excluded during subsequent analysis. The stannane data also contained additional weak diffraction peaks most likely attributable to decomposition products from the sample.

Density considerations suggest that there are four GeD\(_4\) molecules in the unit cell which implies a non-centrosymmetric orthorhombic space group, assuming the structure comprises one molecule on a general position in the asymmetric unit. The highest-symmetry space group consistent with the systematic absences is \(P2_12_12\). Using this space group the crystal structure was solved by simulated annealing implemented by TOPAS-Academic using an ideal GeD\(_4\) tetrahedral molecular template with a Ge—D bond length of 1.515 Å, as determined by microwave spectroscopy (Ohno et al., 1986). The inherent peak overlap in powder diffraction patterns, even with high-resolution data, often leads to ambiguity in the space-group assignment and hence checks were also made, without success, using other possible space groups, namely \(Pmm2_1\), \(P2_12_12\), \(P22_2\), and \(P222\). The final structure\(^1\) was refined without constraints (details are given in Table 1) and the final profile fit is shown in Fig. 1.

\(^{1}\)Supplementary data for this paper are available from the IUCr electronic archives (Reference: WS5063). Services for accessing these data are described at the back of the journal.
A similar strategy was adopted in the structure solution of SnD₄. It was deduced that \(Z = 4 \) and therefore the structure comprises one molecule located either on a general position or located on a twofold rotation axis for the candidate non-centrosymmetric or centrosymmetric space groups, respectively. The structure was solved in the space group \(\text{C}_2/\text{c} \) using a molecular template with a Sn—D bond length of 1.694 Å (Ohno et al., 1986). Refinement details are given in Table 1 and the final profile fit is shown in Fig. 2.

Crystal structures were visualized using the program DIAMOND (Crystal Impact, 2004) and analyses were carried out using PLATON (Spek, 2003).

3. Results and discussion

The low-temperature crystal structure of SnD₄ is represented in Fig. 4. The average intramolecular Sn—D bond length is 1.707 Å, r.m.s. deviation 0.013 Å, again in close agreement with the equilibrium distance of 1.694 (8) Å determined by microwave measurements (Ohno et al., 1986). The stannane molecules lie on twofold rotation axes and the \(\text{C}_2 \) site symmetry of the molecule provides for the only negligible angular distortion from tetrahedral symmetry. Short contacts are made between Sn atoms and neighbouring D atoms located over the faces of the molecular tetrahedra comprising the structure. The resulting three-dimensional network has Sn···D1 and Sn···D2 contacts of 3.377 (3) and 3.439 (3) Å, respectively. This facet of the stannane structure also corroborates the results of an IR spectroscopic study (McKean & Chalmers, 1967) in which the spectra of SnH₄ in an GeH₄ matrix, or GeH₄ in an SnH₄ matrix, showed that the normally IR-inactive \(\nu_1 \) mode of the probe molecule was observed in these matrices. McKean & Chalmers (1967) suggested that an interaction between an \(M \) atom and one or more H atoms from adjacent \(MH_4 \) molecules could account for this increased intensity whilst noting that it...
was strange that all four H atoms did not behave similarly, unless there is directional character associated with this close contact.

Voronoi–Dirichlet partitioning (Peresypkina & Blatov, 2000) reveals that the molecular coordination number in both germane and stannane is 14, and the topology is approximately body-centred cubic packing with coordination sequences of 14-52-116 and 14-52-114, respectively. Methane is the simplest tetrahedral molecule for comparison of these packing sequences and, by contrast, the fully ordered low-temperature orthorhombic structure of methane-III (Neumann et al., 2003) exhibits ideal cubic close packing with the coordination sequence 12-42-92, reflecting the more efficient packing of the smaller and more rigid molecules. The structures and phase diagram of silane, SiD₄, were also compared with those of methane by Legrand & Press (1976), who concluded that there was no analogy between silane phases and the three ambient-pressure phases of methane, despite the tetrahedral nature of the molecules in each case. It is also clear from the present measurements that any analogy between the phases of methane with germane and stannane are similarly unlikely to hold true, although detailed crystallographic information regarding the higher-temperature phases is still required. The structures of methane are stabilized primarily through orientationally dependent electrostatic octupole–octupole interactions. However, for silane, germane and stannane, as the molecules become progressively larger it seems probable that van der Waals interactions between the molecular centres become dominant. From consideration of the gas-phase equilibrium structures, similarities are more likely to be observed between silane and germane with Si–H and Ge–H bond lengths of 1.473 and 1.515 Å, respectively (Ohno et al., 1986). Phase III of SiH₄ is stable below 38 K (Wilde & Srinivasan, 1975); however, Legrand & Press (1976) were unable to assign unit cells to their low-temperature neutron powder diffraction patterns of SiD₄ due to limitations in resolution and counting statistics. In light of the present studies, an examination of the SiD₄-III data presented in their paper indicates it is likely to be isostructural with GeD₄-III with lattice constants a = 7.26, b = 8.21, c = 4.44 Å, and a unit-cell volume of 265 Å³ at 26 K (see supplementary material). Spectroscopic investigations on silane phase III (McKean & Chalmers, 1967; Calvani et al., 1990, 1991) also suggest C₁ molecular site symmetry analogous to the germane structure.

In summary, the low-temperature phase III structures of perdeuterogermane and -stannane have been determined by high-resolution neutron powder diffraction. Germane has an orthorhombic structure comprising molecules with C₂ᵥ site symmetry and this structure is most likely adopted by silane below 38 K. The structure of stannane is monoclinic with molecules located on twofold rotation axes.

This work has been supported by STFC with the provision of neutron beamtime and EPSRC with studentships (IJM and DHB). The authors thank Mr John Dreyer for help with the gas-handling apparatus and Professor Simon Parsons for assistance in attempts to grow single crystals at low temperature.

References

