Low-dose versus standard-dose alteplase in acute ischemic stroke in Asian stroke registries: an individual patient data pooling study

Citation for published version:

Digital Object Identifier (DOI):
10.1177/1747493019858777

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International Journal of Stroke

Publisher Rights Statement:
This is the authors' peer-reviewed manuscript as accepted for publication.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Low-dose versus standard-dose alteplase in acute ischaemic stroke in Asian stroke registries: an individual patient data pooling study

<table>
<thead>
<tr>
<th>Journal:</th>
<th>International Journal of Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>IJS-12-18-6812.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Review</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>27-Mar-2019</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Wang, Xia; The George Institute for Global Health, Neurological & Mental Health Division
Li, JINGWEI
Moullaali, Tom; George Institute for Global Health, Vascular and metabolic; University of Edinburgh Division of Health Sciences, Centre for Clinical Brain Sciences
Lee, Keon-Joo; Seoul National University Hospital, Neurology
Kim, Beom Joon; Seoul National University Bundang Hospital, Neurology
Bae, Hee-Joon
Wang, Anxin; Beijing Tiantan Hospital, Capital Medical University, Department of Neurology
Wang, Yilong
Wang, David
Wang, Yongjun; Beijing Tiantan Hospital, Kumamoto, Masaya
Toyoda, Kazunori; National Cerebral and Cardiovascular Center, Department of Cerebrovascular Medicine
Koga, Masatoshi; National Cerebral and Cardiovascular Center, Division of Stroke Care Unit
Sato, Shoichiro; National Cerebral and Cardiovascular Center, Department of Cerebrovascular Medicine
Yoshimura, Sohei; The George Institute for Global Health, Neurological & Mental Health Division; Kokuritsu Junkankibyo Kenkyu Center, Department of Cerebrovascular Medicine
Sui, Yi
Xu, Bin
Xiao, Ying
Lee, Tsong-Hai
Liou, Chia-Wei; Chang Gung Memorial Hospital Kaohsiung Medical Center, Stroke Center and Department of Neurology
Lee, Jiann-Der
Peng, Tsung-I
Huang, Yen-Chu; Chang-Gung Memorial Hospital, Neurology
Paliwal, Prakash
Sharma, Manasi
Escabillas, Cyrus
Navarro, Jose; University of Santo Tomas Hospital, Stroke Services
Sun, Mu-Chien; Changhua Christian Hospital, Neurology
Dong, Yi
Dong, Qiang; Huashan Hospital, State Key of Laboratory of Neurobiology, Fudan University, Department of Neurology
Anderson, Craig; University of New South Wales, The George Institute for Global Health, Faculty of Medicine; Peking University Health Sciences Centre, Royal Prince Alfred Hospital
Sharma, Vijay; National University of Singapore,

| Keywords: | Acute stroke therapy, Asia, rtPA, Stroke, Thrombolysis, Ischaemic stroke |
Low-dose versus standard-dose alteplase in acute ischemic stroke in Asian stroke registries: an individual patient data pooling study

Xia Wang, PhD1 Jingwei Li, PhD2,3 Tom J Moullaali, MD1,4 Keon-Joo Lee,5 Beom Joon Kim,5 Hee-Joon Bae,5 Anxin Wang, PhD6 Yilong Wang, MD6 David Z.Wang, MD7 Yongjun Wang, MD8 Masaya Kumamoto, MD8 Kazunori Toyoda, MD8 Masatoshi Koga, MD8 Shoichiro Sato, MD8 Sohei Yoshimura, MD8 Yi Sui, MD9 Bing Xu, MD9 Ying Xiao, MD9 Tsong-Hai Lee, MD10 Chia-Wei Liou, MD11 Jiann-Der Lee, MD12, Tsung-I Peng, MD13, Yen-Chu Huang, MD12, Prakash R Paliwal, MD,14 Manasi Sharma, MD,14 Cyrus Escabillas, MD15 Jose C. Navarro, MD15 Mu-Chien Sun, MD16, Yi Dong, MD17, Qiang Dong, MD17, Craig S Anderson, MD, PhD1,18, Vijay K. Sharma, MD14,19

1The George Institute for Global Health, Faculty of Medicine, University of New South Wales, NSW, Australia
2Department of Cardiology, People's Liberation Army General Hospital, Beijing, China
3Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
4Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
5The Department of Neurology and Cerebrovascular Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
6Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
7College of Medicine, University of Illinois, Peoria, USA
8Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka, Japan
9Shenyang First People's Hospital, Shenyang Medical College Affiliated Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang Clinical Research Center for Neurological Disorders
10Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
11Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
12Department of Neurology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
13Department of Neurology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
14Division of Neurology, National University Hospital, Singapore
15Stroke Services, Department of Neurology, Jose R. Reyes Memorial Medical Center, Manila, Philippines
16Department of Neurology, Changhua Christian Hospital, Taiwan
17Department of Neurology, Huashan Hospital affiliated to Fudan University, Shanghai, China
18The George Institute China at Peking University Health Science Center, Beijing, PR China
19Yong Loo Lin School of Medicine, National University of Singapore, Singapore
Corresponding Author
Professor Craig S Anderson
The George Institute for Global Health
PO Box M201, Missenden Road, NSW 2050, AUSTRALIA
T: +61-2-9993-4500; F: +61-2-9993-4502
Email: canderson@georgeinstitute.org.au

Professor Yongjun Wang
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantanxili,
Dongcheng District, Beijing, China 100050.
E-mail yongjunwang1962@gmail.com

Statistical analysis:
Dr Xia Wang
The George Institute for Global Health
PO Box M201, Missenden Road, NSW 2050, AUSTRALIA
Email: xwang@georgeinstitute.org.au

Disclosures:
X Wang reports receiving research grant from the George Institute for Global Health. T.J. Moullaali reports grants from British Heart Foundation. C.S. Anderson reports receiving fees for Advisory Panels of Astra Zeneca and Medtronic, speaking at seminars for Takeda China and Boehringer Ingelheim, and a research grant from Takeda China. All other authors report no disclosures.

Word counts: abstract 231; body 1916
Abstract

Objective: To investigate the comparative efficacy and safety of the low-dose versus standard-dose alteplase using real-world acute stroke registry data from Asian countries.

Methods: Individual participant data were obtained from 9 acute stroke registries from China, Japan, Philippines, Singapore, South Korea and Taiwan between 2005 and 2018. Inverse probability of treatment weight was used to remove baseline imbalances between those receiving low-dose vs standard-dose alteplase. The primary outcome was death or disability defined by modified Rankin Scale (mRS) scores of 2-6 at 90 days. Secondary outcomes were symptomatic intracerebral hemorrhage (sICH) and death. Generalized linear mixed models with the individual registry as a random intercept were performed to determine associations of treatment with low-dose alteplase and outcomes.

Results: Of the 6250 patients (mean age 66 years, 36% women) included in these analyses, 1610 (24%) were treated with low-dose iv alteplase. Clinical outcomes for low-dose alteplase were not significantly different to those for standard-dose alteplase, adjusted odds ratios for death or disability: 1.00 (0.85-1.19) and sICH 0.87 (0.63-1.19), except for lower death with borderline significance, 0.77 (0.59-1.01).

Conclusions: The present analyses of real-world Asian acute stroke registry data suggest that low-dose iv alteplase has overall comparable efficacy for functional recovery and greater potential safety in terms of reduced mortality, to standard-dose alteplase for the treatment of acute ischemic stroke.

Key words- acute ischemic stroke; thrombolysis; alteplase dose; symptomatic intracranial hemorrhage; individual patient analysis; Asian
Introduction

Recombinant tissue plasminogen activator (rtPA/alteplase) is the established treatment for acute ischemic stroke (AIS). Most guidelines1,2 recommend an intravenous (iv) dose of 0.9 mg/kg of alteplase (10\% as a bolus and the remaining as an infusion over 1-hour; maximum dose 90mg) to eligible patients with AIS, presenting within 3 or 4.5 hours of symptom-onset, based on the National Institute of Neurological Disorders and Stroke (NINDS)3 and the European Cooperative Acute Stroke Study (ECASS) trials,4-6 respectively. However, a dose of 0.6 mg/kg (10\% as a bolus and the remaining as an infusion over 1 hour; maximum dose 60mg) is the approved dose of alteplase in Japan7, where non-randomized studies8-11 have suggested comparable clinical outcomes and reduced risk of symptomatic intracerebral hemorrhage (sICH) compared to the standard-dose.8,9 In other Asian countries, low-dose alteplase is used widely, largely due to the reduced cost and anticipated lower rates of sICH.12,13

The ENhanced Control of Hypertension And Thrombolysis strokE stuDy (ENCHANTED)13-15 has been the only randomized comparison of low- versus standard-dose iv alteplase in AIS patients who fulfilled standard eligibility criteria for this treatment. The study demonstrated that low-dose alteplase did not meet the stringent non-inferiority criteria compared to standard-dose alteplase with respect to the conventional binary clinical endpoint of death and disability, defined by scores of 2-6 on the modified Rankin scale (mRS) at 90 days. However, low-dose alteplase was non-inferior with respect to an ordinal analysis of this endpoint, and there were significantly fewer cases of sICH across all standard criteria in the low-dose alteplase group. The ENCHANTED results have stimulated debate about the widespread use of low-dose alteplase in Asian medical practice.

Systematic reviews16,17 comparing low- and standard-dose alteplase have shown little difference in clinical outcomes, possibly due to individual studies being under-powered.
Hence, we initiated an international collaborative, individual patient data (IPD) pooling project, to compare low- and standard-dose alteplase, with the aim of providing reliable evidence about the optimal dose of iv alteplase for Asian AIS patients.

METHODS

This study was based on IPD and adhered to the PRISMA-IPD (Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data). All participating studies were approved by their local ethics committees. Data were obtained from 9 stroke registries from 6 Asian countries (China, Japan, Philippines, Singapore, South Korea and Taiwan), 6 of which were identified by a systematic search, representing 50% of the 12 potentially eligible studies with sample size over 100; 3 were unpublished. We requested de-identified IPD on patient characteristics, the dose of alteplase and outcomes from the study investigators. The reasons for excluding 6 studies were ethical approval not being granted (4) and refusal to participate (2) (Supplementary table 1).

We collected information on factors that might explain the differences in the association between alteplase-dose treatment and outcomes including: (i) alteplase treatment (time from onset to treatment and dosage); (ii) demographics (age, sex, body weight, country of recruitment); (iii) medical history (hypertension, previous stroke, coronary artery disease, atrial fibrillation, diabetes, hypercholesterolemia and smoking); (iv) medication history (antihypertensive medication, lipid-lowering medication, antidiabetic medication, warfarin use, aspirin or other antiplatelet use); (v) hemodynamic parameters (systolic/diastolic blood pressure, heart rate); and (vi) stroke severity (the National Institute of Health Stroke Scale [NIHSS]) and stroke etiology according to the Trial of Org 10172 in acute stroke treatment (TOAST) classification.
Functional outcome was measured by mRS at 3 months. The definition of sICH varied among the studies: 3 studies defined it as per the NINDS trial, 5 studies defined it as radiological evidence of ICH associated with neurological deterioration (4 used a corresponding 4-points increase on the NIHSS; 1 study used a 2-point increase), and 1 study defined it as per the ECASS II trial (any ICH with neurological deterioration [≥4 points on the NIHSS) from baseline or death within 24 to 36 hours) (Supplementary table 2).

Data not provided in the article because of space limitations may be shared (anonymized) at the request of any qualified investigator for purposes of replicating procedures and results.

Statistical analysis

Initial internal analyses were performed to compare baseline and outcome data from each study with their published results to ensure that data were complete and transferred without error. Since most of the individual study results have already been published, results from analysis of individual studies will not be identifiable in this publication. We, therefore, used the 1-stage method of analysis proposed for IPD meta-analyses.

The characteristics of the low-dose alteplase group were expected to substantially differ from those of the standard-dose group. To generate a comparable data set, we calculated a propensity score to estimate the individual probability of a patient receiving low-dose alteplase. Six variables were used as covariates to calculate propensity scores (sex, age, baseline systolic blood pressure [SBP], baseline NIHSS, premorbid mRS, time from onset to treatment, and presence of vascular risk factors [prior transient ischemic stroke, stroke, hypertension, coronary artery disease, atrial fibrillation, diabetes or hypercholesterolemia]).

The inverse probability of treatment weighting (IPTW) was used as the primary strategy to adjust for baseline imbalances. Data balancing was examined using an absolute standardized difference in covariate means. The distributions of baseline covariates were
fairly well balanced by applying propensity scores; the absolute standardized differences after IPTW were within an acceptable margin of 0.1 (supplementary figure 1). Stabilized weights23 were used to reduce variance of the estimated effect of low-dose alteplase, and were incorporated into generalized linear mixed models with the individual registry as a random intercept to determine associations of treatment with low/standard-dose alteplase and outcomes.

For all analyses involving the primary outcome of functional recovery (ordinal scores on the mRS), we checked the proportional odds assumption was not violated; where this was violated, we present functional outcome according to binary mRS scores. Subgroup analyses by key demographic variables (sex; age <65 vs. \textgeq 65 years), clinical severity (defined by NIHSS scores <10 vs. \textgeq 10 points), treatment (time from onset to treatment <3 vs. \textgeq 3 hours), TOAST classification (large-artery atherosclerosis, small-vessel, cardioembolism, and other etiology) and premorbid mRS (0-1 vs. 2-5) were undertaken to test the consistency of any association. We assessed the heterogeneity of association in subgroups by adding an interaction term in the models. Data are presented as odds ratios (OR) and 95% confidence intervals (CI). A two sided P <0.05 was set as the level for statistical significance. All statistical analyses were performed using SAS version 9.3 (SAS institute, Cary, NC, USA).

Results

There were 6852 patients from 8 studies, 6250 of which were treated either by low-dose alteplase (0.55-0.65 mg/kg, 23.4%) or standard-dose alteplase (0.85-0.95 mg/kg, 66.6%). Data for sICH were available in all patients, mRS data in 4055, and sICH data in 6250 patients. The mean age of the patients was 66 years, 37% were female, and the median NIHSS was 10 (IQR 6-16). Table 1 shows the baseline characteristics of patients according to alteplase dosage: those in the low-dose group were significantly older and more neurologically impaired, and a higher proportion were female, hypertensive, and with co-
morbidity. Additionally, strokes due to large-artery atherosclerosis were more likely to be treated with standard-dose alteplase, while strokes due to cardioembolism were more likely to be treated with low-dose alteplase.

The distribution of mRS scores at 3 months was shown in figure 1. Compared to standard-dose alteplase, treatment with low-dose alteplase was not associated with death and disability (mRS 2-6) at 3 months (OR 1.00, CI 0.85-1.19) or sICH (OR 0.87, CI 0.63-1.19) (Figure 2). However, treatment with low-dose alteplase was associated with lower risk of 3-month mortality with borderline significance (OR 0.77, CI 0.59-1.01).

Figure 3 shows that associations were consistent across the key subgroups by age, sex, stroke severity, time from onset to treatment, and stroke subtype. Although, significant heterogeneity was evident for dichotomised premorbid mRS (0-1 vs. 2-5), the current study is under-powered to explore the association for the subgroup of premorbid mRS 2-5.

DISCUSSION

This IPD meta-analysis aimed to provide reliable evidence about the efficacy and safety of low-dose alteplase in real world Asian populations, adjusted for important confounders. Our analyses of pooled data from 9 real-world acute stroke registries from Asian countries show that low-dose alteplase treatment of AIS has comparable overall efficacy and potentially improved safety compared with standard-dose alteplase when used to treat AIS within 4.5 hours of onset.

We confirm findings from previous comprehensive systematic reviews that show low- and standard-dose alteplase have equivalent outcomes for the treatment of AIS.12,19 In the present study, 63\% of patients who were treated with low-dose alteplase had the outcome of death or disability (mRS 2-6), which is similar to the single-arm nonrandomized studies first and second Japan Alteplase Clinical Trial (J-ACT 1 and 2), and the Japan Post-marketing
Alteplase Registration Study (JMARS). Additionally, 55% of patients treated with standard-dose alteplase had the outcome of death or disability, which is comparable to data from the multinational Safe Implementation of Thrombolysis in Stroke–Non-European Union World study,24 NINDS trial,3 and the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST).25 These similarities support the reliability of our large dataset of pooled real-world IPD.

In regard to functional outcome at 90 days, we found that for those treated with low-dose alteplase, a smaller proportion of deaths was accompanied by an increase in moderate to severe disability amongst survivors – a finding that is consistent with that of the ENCHANTED trial. This finding occurred despite differences in patient characteristics at baseline; patients enrolled in ENCHANTED were younger, had milder deficits, were treated with alteplase at a longer time from the onset of symptoms, and were less likely to have atrial fibrillation or major arterial occlusion. These factors may be considered barriers to implementation of the ENCHANTED findings directly into clinical practice, however our real-world data provide support for the generalizability of these trial results.

A notable point of difference relates to alteplase dose and sICH risk; the ENCHANTED trial showed that low-dose alteplase significantly reduced the risk of sICH, however our analyses showed no such association. This discordance could be explained by differences between the definitions used to identify sICH in a clinical trial and across real-world clinical practice in several different healthcare systems; it may also be explained by inadequate adjustment for confounders. For example, we did not have information on prior antiplatelet or anticoagulant use, both of which are important prognostic factors in thrombolysis-associated ICH. Another limitation of the present study is data availability bias arising from our inability to acquire IPD from 4 large registries in Japan and Taiwan (8840 patients) due to ethical approval issues. In addition, there is significant difference in time from onset to treatment and
countries contributing standard and low-dose alteplase patients which may have affected our overall results. However higher age, higher NIHSS are points against for low-dose alteplase, which may have nullified effects though we have conducted propensity score matching analysis.

Prior to this work, observational studies from Asia reported conflicting findings. For instance, low-dose alteplase was found to be equivalent to standard-dose in a large observational registry from South Korea.26 Conversely, the Thrombolysis Implementation and Monitor of Acute Ischemic Stroke registry in China showed that standard-dose alteplase produced favorable outcomes without increasing the risk of sICH.27 Therefore, our analyses of pooled IPD, which include the aforementioned studies, provide clarity in producing a comprehensive summary of the evidence, and greater power to detect meaningful associations between alteplase dose and outcome, adjusted for important confounders.

In summary, this international collaborative project, curated and analyzed IPD from a wide variety of Asian stroke registry studies, reports that low- and standard-dose alteplase have equivalent outcomes in AIS. This finding needs to confirmed in a randomised clinical trial including patients undergoing mechanical thrombectomy as well.
References

8. Yamaguchi T, Mori E, Minematsu K, et al. Alteplase at 0.6 mg/kg for acute ischemic stroke within 3 hours of onset: Japan Alteplase Clinical Trial (J-ACT). Stroke 2006;37:1810-1815.
Figure legends

Figure 1: mRS distribution by low-dose versus standard-dose alteplase

Figure 2: Association between low-dose and standard-dose alteplase and clinical outcomes

Model a: propensity score was derived from the model with sex, age, baseline NIHSS, time from onset to treatment, and risk factor (prior TIA, stroke, hypertension, coronary artery disease, AF, diabetes, or hypercholesterolemia)

Model b: propensity score was derived from the model with sex, age, baseline NIHSS score, premorbid modified Rankin Scale(mRS), time from onset to treatment, and risk factor (prior TIA, stroke, hypertension, coronary artery disease, AF, diabetes, or hypercholesterolemia)

Figure 3 subgroup analysis
Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>Standard-dose alteplase (0.9 mg/kg) (n=4640)</th>
<th>Low-dose alteplase (0.6 mg/kg) (n=1610)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD)</td>
<td>65.1(12.0)</td>
<td>68.4(12.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Female</td>
<td>1640/4598(35.7)</td>
<td>604/1548(39.0)</td>
<td>0.018</td>
</tr>
<tr>
<td>Time from stroke onset to treatment, median(IQR)</td>
<td>2.52(1.83-3.08)</td>
<td>2.30(1.75-2.83)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>China</td>
<td>2877/4640(62.0)</td>
<td>347/1610(21.6)</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>1076/4640(23.2)</td>
<td>450/1610(28.0)</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>0(0.00)</td>
<td>600/1610(37.3)</td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>368/4640(7.9)</td>
<td>22/1610(1.4)</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>224/4640(4.8)</td>
<td>135/1610(8.4)</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>95/4640(2.1)</td>
<td>56/1610(3.5)</td>
<td></td>
</tr>
<tr>
<td>NIHSS, median(IQR)</td>
<td>9(5-15)</td>
<td>11(6-18)</td>
<td><0.0001</td>
</tr>
<tr>
<td>SBP</td>
<td>148.6(24.9)</td>
<td>151.1(23.6)</td>
<td>0.0002</td>
</tr>
<tr>
<td>DBP</td>
<td>86.2(14.9)</td>
<td>84.3(16.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Pre-morbid mRS</td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>0-1</td>
<td>2610/4117(63.4)</td>
<td>1100/1413(77.9)</td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>1507/4117(36.6)</td>
<td>313/1413(22.2)</td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td>1662/4512(36.8)</td>
<td>368/1007(36.5)</td>
<td>0.863</td>
</tr>
<tr>
<td>Prior stroke</td>
<td>657/3545(18.5)</td>
<td>237/1149(20.6)</td>
<td>0.116</td>
</tr>
<tr>
<td>Prior coronary artery disease</td>
<td>104/2281(4.6)</td>
<td>160/944(17.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Prior atrial fibrillation</td>
<td>1097/4640(23.6)</td>
<td>606/1600(37.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Prior hypertension</td>
<td>2961/4640(63.8)</td>
<td>1068/1606(66.5)</td>
<td>0.053</td>
</tr>
<tr>
<td>Prior dislipidemia</td>
<td>853/4638(18.4)</td>
<td>438/1603(27.3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Prior diabetes mellitus</td>
<td>1046/4640(22.5)</td>
<td>383/1609(23.8)</td>
<td>0.300</td>
</tr>
<tr>
<td>TOAST classification</td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>Large-artery atherosclerosis</td>
<td>854/2287(37.3)</td>
<td>369/1475(25.0)</td>
<td></td>
</tr>
<tr>
<td>Small-vessel occlusion</td>
<td>243/2287(10.6)</td>
<td>143/1475(9.7)</td>
<td></td>
</tr>
<tr>
<td>Cardioembolism</td>
<td>678/2287(29.7)</td>
<td>694/1475(47.1)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>512/2287(22.4)</td>
<td>269/1475(18.2)</td>
<td></td>
</tr>
</tbody>
</table>

SD: standard deviation; IQR: interquartile range; mRS: modified Rankin Scale; TOAST: Aetiological Trial of Org 10172 in acute stroke treatment (TOAST) classification
Figure 1

Percentage of mRS scores

Low dose

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16.8</td>
<td>18.2</td>
<td>13.4</td>
<td>12.3</td>
<td>15.3</td>
<td>13.9</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Standard dose

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22.2</td>
<td>21.0</td>
<td>12.4</td>
<td>13.4</td>
<td>13.4</td>
<td>6.8</td>
<td>10.7</td>
</tr>
</tbody>
</table>
Figure 2

<table>
<thead>
<tr>
<th>Model</th>
<th>Low-dose alteplase</th>
<th>Standard-dose alteplase</th>
<th>Odds Ratio</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mRS 2-6</td>
<td>894/1435(62.3)</td>
<td>1400/2519(55.6)</td>
<td>0.97(0.84-1.13)</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>133/1435(9.3)</td>
<td>259/2519(10.3)</td>
<td>0.80(0.63-1.01)</td>
</tr>
<tr>
<td></td>
<td>SICH</td>
<td>85/1540(5.5)</td>
<td>244/4360(5.6)</td>
<td>1.15(0.87-1.50)</td>
</tr>
<tr>
<td>b</td>
<td>mRS 2-6</td>
<td>789/1244(63.4)</td>
<td>1245/2189 (56.9)</td>
<td>1.00(0.85-1.19)</td>
</tr>
<tr>
<td></td>
<td>Death</td>
<td>107/1244 (8.6)</td>
<td>226/2189 (10.3)</td>
<td>0.77(0.59-1.01)</td>
</tr>
<tr>
<td></td>
<td>SICH</td>
<td>62/1343 (4.6)</td>
<td>219/3901 (5.6)</td>
<td>0.87(0.63-1.19)</td>
</tr>
</tbody>
</table>
Figure 3

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Odds Ratio</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.85(0.64-1.13)</td>
<td>0.937</td>
</tr>
<tr>
<td>Male</td>
<td>1.09(0.88-1.35)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td><65</td>
<td>1.17(0.91-1.52)</td>
<td>0.849</td>
</tr>
<tr>
<td>≥65</td>
<td>0.98(0.78-1.24)</td>
<td></td>
</tr>
<tr>
<td>NIHSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>1.06(0.84-1.34)</td>
<td>0.750</td>
</tr>
<tr>
<td>≥10</td>
<td>0.98(0.74-1.31)</td>
<td></td>
</tr>
<tr>
<td>Time from onset to treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td><3h</td>
<td>1.13(0.93-1.37)</td>
<td>0.395</td>
</tr>
<tr>
<td>≥3h</td>
<td>0.75(0.51-1.10)</td>
<td></td>
</tr>
<tr>
<td>TOAST classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large-artery atherosclerosis</td>
<td>1.02(0.76-1.37)</td>
<td>0.087</td>
</tr>
<tr>
<td>Small-vessel occlusion</td>
<td>1.02(0.58-1.80)</td>
<td></td>
</tr>
<tr>
<td>Cardioembolism</td>
<td>0.90(0.67-1.21)</td>
<td></td>
</tr>
<tr>
<td>Other etiology</td>
<td>0.83(0.57-1.19)</td>
<td></td>
</tr>
<tr>
<td>Premorbid mRS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>0.87(0.72-1.05)</td>
<td>0.021</td>
</tr>
<tr>
<td>2-5</td>
<td>1.07(0.64-1.79)</td>
<td></td>
</tr>
</tbody>
</table>